Document Type

Article

Publication Date

2-2018

Publication Title

Automatica

Department

Mechanical & Industrial Engineering

Abstract

This paper studies the migration of double imaginary roots of the systems’ characteristic equation when two parameters are subjected to small deviations. The proposed approach covers a wide range of models. Under the least degeneracy assumptions, we found that the local stability crossing curve has a cusp at the point that corresponds to the double root, and it divides the neighborhood of this point into an S-sector and a G-sector. When the parameters move into the G-sector, one of the roots moves to the right halfplane, and the other moves to the left half-plane. When the parameters move into the S-sector, both roots move either to the left half-plane or the right half-plane depending on the sign of a quantity that depends on the characteristic function and its derivatives up to the third order.

Share

COinS