Structural Effects on the Temperature Dependence of Hydride Kinetic Isotope Effects of the NADH/NAD+ Model Reactions in Acetonitrile: Charge-Transfer Complex Tightness Is a Key
Document Type
Article
Publication Date
3-1-2024
Publication Title
Journal of Organic Chemistry
Department
Chemistry
Abstract
It has recently frequently been found that the kinetic isotope effect (KIE) is independent of temperature (T) in H-tunneling reactions in enzymes but becomes dependent on T in their mutants. Many enzymologists found that the trend is related to different donor-acceptor distances (DADs) at tunneling-ready states (TRSs), which could be sampled by protein dynamics. That is, a more rigid system of densely populated short DADs gives rise to a weaker T dependence of KIEs. Theoreticians have attempted to develop H-tunneling theories to explain the observations, but none have been universally accepted. It is reasonable to assume that the DAD sampling concept, if it exists, applies to the H-transfer reactions in solution, as well. In this work, we designed NADH/NAD+ model reactions to investigate their structural effects on the T dependence of hydride KIEs in acetonitrile. Hammett correlations together with N-CH3/CD3 secondary KIEs were used to provide the electronic structure of the TRSs and thus the rigidity of their charge-transfer complexation vibrations. In all three pairs of reactions, a weaker T dependence of KIEs always corresponds to a steeper Hammett slope on the substituted hydride acceptors. It was found that a tighter/rigid charge-transfer complexation system corresponds with a weaker T dependence of KIEs, consistent with the observations in enzymes.
Recommended Citation
Beach A, Adhikari P, Singh G, Song M, DeGroot N, Lu Y. Structural Effects on the Temperature Dependence of Hydride Kinetic Isotope Effects of the NADH/NAD+ Model Reactions in Acetonitrile: Charge-Transfer Complex Tightness Is a Key. J Org Chem. 2024 Mar 1;89(5):3184-3193. doi: 10.1021/acs.joc.3c02562. Epub 2024 Feb 16. PMID: 38364859; PMCID: PMC10913049.