
Southern Illinois University Edwardsville Southern Illinois University Edwardsville 

SPARK SPARK 

SIUE Faculty Research, Scholarship, and Creative Activity 

11-19-2018 

Markov chains and generalized wavelet multiresolutions Markov chains and generalized wavelet multiresolutions 

Myung-Sin Song 
Southern Illinois University Edwardsville, msong@siue.edu 

Palle Jorgensen 
The University of Iowa 

Follow this and additional works at: https://spark.siue.edu/siue_fac 

 Part of the Harmonic Analysis and Representation Commons, and the Other Applied Mathematics 

Commons 

Recommended Citation Recommended Citation 
Song, Myung-Sin and Jorgensen, Palle, "Markov chains and generalized wavelet multiresolutions" (2018). 
SIUE Faculty Research, Scholarship, and Creative Activity. 96. 
https://spark.siue.edu/siue_fac/96 

This Article is brought to you for free and open access by SPARK. It has been accepted for inclusion in SIUE Faculty 
Research, Scholarship, and Creative Activity by an authorized administrator of SPARK. For more information, please 
contact jkohlbu@siue.edu. 

https://spark.siue.edu/
https://spark.siue.edu/siue_fac
https://spark.siue.edu/siue_fac?utm_source=spark.siue.edu%2Fsiue_fac%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/181?utm_source=spark.siue.edu%2Fsiue_fac%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/122?utm_source=spark.siue.edu%2Fsiue_fac%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/122?utm_source=spark.siue.edu%2Fsiue_fac%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
https://spark.siue.edu/siue_fac/96?utm_source=spark.siue.edu%2Fsiue_fac%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jkohlbu@siue.edu


MARKOV CHAINS AND GENERALIZED WAVELET MULTIRESOLUTIONS

PALLE E.T. JORGENSEN AND MYUNG-SIN SONG

Abstract. We develop some new results for a general class of transfer operators, as they are used in a
construction of multi-resolutions. We then proceed to give explicit and concrete applications. We further
discuss the need for such a constructive harmonic analysis/dynamical systems approach to fractals.
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1. Introduction and Setting.

While there are already a number of approaches to harmonic analysis of fractals, “non-smooth” settings,
we propose below a focus on a certain family of positive operators. They will serve as transfer operators.

Our paper is divided into two parts: in the first we develop the needed results on transfer operators, and
the second part will be concrete applications. There are many justification for the need of a constructive
harmonic analysis of fractals; one is the discovery of Jorgensen-Pedersen that certain fractal L2 spaces admit
Fourier bases; while others do not. However the lack of available Fourier bases in many example suggests a
need for alternative approaches.

The Cantor fractals are special cases of more general IFS systems. Our present paper will deal with this
more general framework. In addition to fractal Fourier analyses (fractals in the large), we shall also study
multiresolution and wavelet techniques. In work of Dutkay-Jorgensen, it was shown that the general affine
IFS-systems, even if not amenable to Fourier analysis, in fact do admit wavelet bases, and so in particular
can be analyzed with the use of multiresolutions; reflecting the inherent self-similarity to the fractal under
consideration. But this approach in fact depends on the use of certain transfer operators. The latter in
turn ties in with intriguing new work on cascade algorithms, with an analysis of representations of non-
commutative generators and relations (especially the Cuntz relations), as well as with certain stochastic
processes; and we shall make connections to recent research on Markov processes, and to reproducing kernel
theory.

2000 Mathematics Subject Classification. Primary 60J20, 42C40, 42C10; Secondary 28A80,
Key words and phrases. Markov chains, multiresolution, fractals, Cuntz relations, optimization.
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2 PALLE E.T. JORGENSEN AND MYUNG-SIN SONG

2. Generalized multi-resolution measures on solenoids.

In section 2 below we introduce a certain multi-resolution approach to problems that arise in analysis
of fractals and more generally in stochastic analysis. Examples will be given in section 4, and a wavelet
representation approach in section 5.

Definition 2.1. Let X be a compact Hausdorff space. Consider a linear operator

(2.1) R : C(X)→ L∞(X)

and assume it is positive. i.e., f ≥ 0⇒ Rf ≥ 0.

Proof. Riesz. We also consider positive Borel measures λ on X . �

Theorem 2.2. Let λ be a finite positive Borel measure on X. Then the following are equivalent:

(1) λR << λ with Radon-Nikodym derivative w.
(2)

∫
wfdλ =

∫
(Rf)dλ, for all f ∈ C(X)

Proof. This is immediate from the definition of the Radon-Nikodym derivative. To understand it in more
detail, it helps to have a generalized Perron-Frobenius theorem. Recall, R satisfies an additional condition
thus as follows: In general, it may be difficult, but recall R : C(X) → L∞(X,λ) also satisfies the following
property (i.e., transition operator has the pull-out property.) Let σ be an embedding in the measure space
X , and assume that

(2.2) R[(f ◦ σ)g] = fRg, ∀f, g ∈ C(X).

Remark 2.3. The axiom (2.2) is a generalized conditional expectation property. But, in general, as an
operator in L2(λ), R may still be unbounded. Nonetheless, if

µ = λ ◦R and
dµ

dλ
= w Radon-Nikodym derivative.

Note w depends on both R and on λ.

�

We now study domains of the unbounded operators in L2(λ).

Theorem 2.4. Suppose (2) and (2.2) hold, then

(2.3) C(X) ⊂ domain(R∗), the domain of the adjoint operator R∗; in general possibly unbounded.

Generally, R∗f = w(f ◦ σ), for all f ∈ C(X). Moreover, R : L2(λ)→ L2(λ) is bounded if and only if

(2.4) w ∈ L∞(λ), and then ‖R‖2→2 = ‖R(w)‖1/2∞ .

But in general, R is an unbounded operator in L2(λ). As noted, we have:

1) λR << λ
2) dλR

dλ = w

Lemma 2.5. Let C(X) ⊂ domain(R∗), and

(2.5) R∗f = wf ◦ σ, ∀f ∈ C(X) i.e.,(R∗f)(x) = w(x)f(σ(x)), ∀x ∈ X.
implies RR∗f = fR(w).

Proof. (of the Lemma) Assume (2) and (2.2), then

(2.6)

∫
w(f ◦ σ)gdλ =

by(2.2)

∫
f(Rg)dλ ∀g ∈ C(X).
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Indeed, the right hand side of (2.6),

RHS of (2.6) =

∫
fRgdλ =

by(2.2)

∫
R((f ◦ g))dλ

=
by(2)

∫
w(f ◦ σ)gdλ, where we use that w =

dµ

dλ
= R∗(1).

Hence,

RHS of (2.6) ≤
Schwarz

∫
|wf ◦ σ|2dλ

∫
|g|2dλ

⇒ f ∈ dom(R∗), and

R∗f = wf ◦ σ.
�

this is a weighted composition operator.

2.1. The case of unbounded w. Even if w = dµ
dλ is only in L1(λ), then the following two operators are

well defined as L2(λ) → L2(λ) operators; each with C(X) ⊂ L2(λ) as dense domain, and R ⊂ S∗, S ⊂ R∗;
(containments of operators) see (2.9) below.

(2.7) L2(λ) ⊃
{
C(X) ∋ f R−→ R(f)or

C(X) ∋ f S−→ w(f ◦ σ) ∈ L2(λ), R : C(X)→ L∞(λ); Rf ∈ L∞(λ), and we have

(2.8) 〈Sf, g〉L2(λ) = 〈f,Rg〉L2(λ), ∀f, g ∈ C(X).

Proof of (2.8)

(2.9)

∫
w(f ◦ σ)gdλ =

∫
fR(g)dλ,

and we verified (2.9) above.

2.2. The bounded case. Moreover, assuming w ∈ L∞(λ), we get

RR∗f = R(wf ◦ σ) =
by (2.9)

f(Rw)

so RR∗ is a multiplication operator on L2(λ), i.e., multiplication by the funtion R(w) ← L∞(λ). So if
‖RR∗‖2→2 = ‖Rw‖∞ < ∞. Recall, by Riesz ‖Rw‖∞ ≤ ‖w‖∞. If and only if RR∗ is bounded: L2(λ) →
L2(λ). If and only if R is bounded: L2(λ) → L2(λ). So by the Hilbert space ‖RR∗‖2→2 = ‖R‖22→2 =
‖R∗‖22→2. (The L

2− operator norms.)

Proof. ∫
R((f ◦ σ)g) =

∫
fRGdλ

∫
(f ◦ σ)gwdλ =

∫
(R∗f)gdλ

R∗f = wf ◦ σ
RR∗f = R(wf ◦ σ) = fRw f : L2(λ)→ L2(λ)

RR∗ in L2(λ) is bounded ⇐⇒ Rw ∈ L∞ ⇐⇒ w ∈ RR∗ ⇐⇒ R in L2(λ) is bounded

�
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The converse also holds: If C(X) ∋ f S
−→
w(f ◦σ) extends to a bounded operator in L2(λ), then w ∈ L∞(λ).

Then adjoint operator R := S∗ (adjoint with respect to the L2(λ)−Hilbert space), then the following holds:

R((f ◦ σ)g) = fR(g), ∀f, g ∈ C(X).

Moreover, if we set µ = λR, i.e.,
∫
fdµ =

∫
Rfdλ, then µ << λ, and w = dµ

dλ is the Radon-Nikodym
derivative.

Corollary 2.6. S∗S is a multiplication operator in L2(λ).

Proof. S∗Sf = R(wf ◦σ) = fR(w) so S∗S = RS is a multiplicative operator,m = R(w). Then set f −→ mf
(λ ◦ σ−1)(E) = λ(σ−1(E)), σ−1(E) = {x ∈ X : σ(x) ∈ E}. �

Corollary 2.7. λ ◦ σ−1 << λ, and dλ◦σ−1

dλ = R
(
1
w

)
.

Proof.
∫
fdλ ◦ σ−1 =

∫
f ◦ σdλ

=

∫
1

w
wf ◦ σdλ wf ◦ σ = R∗f

=

∫
R

(
1

w

)
fdλ;

and the corollary follows. �

Assume in addition that w = dµ
dλ , µ = λ ◦ R. Let w ∈ L∞(λ), and ‖w‖∞ ≤ 1, then ‖R‖2→2 ≤ 1 by the

theorem. Then by Hilbert space theorem

(2.10) Rh = h⇒ R∗h = h

and so

h = R∗h = wh ◦ σ
h = Rh = RR∗h = hR(w),

RR∗h(x) = h(x)R(w)(x),

so

(2.11) h(x) > 0⇒ R(w)(x) = 1.

Corollary 2.8. Suppose w−1 = 1
w is well defined then X, λ, R, σ especially R((f ◦ σ)g) = fRg, then

λ ◦ σ−1 << λ, and dλ◦σ−1

dλ = R
(
1
w

)
; and so λ is σ−invariant if and only if R

(
1
w

)
= 1.

Proof. Let f ∈ C(X), then
∫
fdλ ◦ σ−1 =

∫
(f ◦ σ)dλ

=

∫
1

w
w(f ◦ σ)dλ where w(f ◦ σ) = R∗f

=

∫
R

(
1

w

)
fdλ R

(
1

w

)
= Radon-Nikodym ⇒ R

(
1

w

)
dλ = λ ◦ σ−1.

the desired conclusion. �
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Corollary 2.9.

λ ◦ σ−1 = λ

R

(
1

w

)
= 1

There is a generalized family of multi-resolution measures on solenoids: The solenoid may be defined for
any endomorphism σ : X −→ X where X is compact, and σ is assumed to be onto. In addition, we fix a
positive operator R : C(X) −→ L∞(X), and h ≥ 0 function on X such that Rh = h. Also, given a finite
positive measure λ on X such that µ(f) =

∫
Rfdµ satisfies µ << λ.

Theorem 2.10. Set w := dµ
dλ . From this, we define P on Solσ(X) such that dP◦σ̃

dP = w ◦ π0, where σ̃ is then
indeed automorphism on Solσ(X).

Remark 2.11. σ̃(x0x1x2, · · · ) = (σ(x0)x0x1x2 · · · ) for all x ∈ Solσ(X). R, h, λ or Ri, hi, i ∈ N (properties
as stated in the theorem) but it is or item to measure P on Solσ(X). Given

{
R1, R2, R3, · · ·
h1, h2, h3, · · · , hi ≥ 0 Axiom: Ri+1(hi+1) = hi

in sense of that (Ri, hi) governs the transiton: πi−1 −→ πi, for all i. But if Ri+1(hi+1) = hi and each Ri

satisfy Ri((f ◦ σ)g) = fRi(g), for all f, g ∈ C(X), then there exists a unique Px such that we get consisting
a cylinder, and so Px is well-defined. Px on a cylinder function is: Conditions Cn for cylinder functions over
n.

Proof. Ex(cyl
(n)) =

∫
π−1

0
(x) cyl

(n)dPx = Cn : f0(x)R1(f1R2(f2 · · ·Rn(fnhn) · · · ))(x) The following holds

Cn+1(f0, · · · fn,1) = Cn(f0, · · · , fn)
holds if Rn+1(hn+1) = hn. �

Proof preliminaries: General setting: In detail, recall: (πi)i=0,1,···, πi(x) := xi and Solσ(X) := {(xi)∞σ } ⊂
Π∞

σ x ⊇ Solσ(X), σ(xi+1) = xi.

Definition 2.12. x = (xi)
∞
σ such that σ(xi+1) = xi, for all i = 0, 1, 2, · · · , and we set πj(x) = xj ,

j = 0, 1, 2, · · · , coordinate functions; σ̃(x0x1x2 · · · ) = (σ(x0)x0x1, x2 · · · ); note that σ̃ is an automorphism
with inverse σ̃−1(x0x1x2 · · · ) = (x1, x2 · · · ).
Lemma 2.13. For all x ∈ X, there exists a unique positive measure Px on π−1

0 (x) ⊂ Solσ(x) such that∫
(f0π0f1π1 · · · fnπn)dPx = f(x)R(f1F (f2 · · ·R(fnh) · · · ))(x) or f0(x)R1(f1R2(f2 · · ·Rn(fnhn) · · · ))(x)

General Setting and Assumptions: X compact, σ : X → X endomorphism, onto; λ finite positive measure
on X , Ri : C(X)→ L∞(X) positive such that

(2.12) Ri((f ◦ σ)g) = fRig, ∀f, g ∈ C(X)

or same conditions on Ri, i ∈ N. Assume there exists

(2.13) h ≥ 0,

∫
hdλ = 1, Rh = h,

More generally h1, h2, · · · Ri+1(hi+1) = hi, for all i. Also, w ∈ L∞(λ), there exists a finite constant such
that

(2.14)

∣∣∣∣
∫
(Rf)dλ

∣∣∣∣
2

≤ const
∫
|f |2dλ, ∀f ∈ C(X).

Let 1 denote constant finite 1 on X . Set w = R∗1 ∈ L2(λ), by Riesz. i.e.,

(2.15)

∫
wfdλ =

∫
(Rf)dλ ⇒ R∗f = wf ◦ σ.
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Condition (2.14) is really a Radon-Nikodym derivative as follows: Since R is positive, we have:

µ(f) = λ(R(f)) =

∫

X

(Rf)(x)dλ(x) =

∫
f(wdλ)

is a measure on X by the Riesz theorem; and (2.14) is the case that dµ << dλ (absolute continuous) so the

Radon-Nikodym derivative dµ
dλ = w ∈ L1

+(X,λ) is well defined

(2.16)

∫
fwdλ =

∫
fdµ =

∫
(Rf)dλ. µ = λR

Conversely, suppose (2.16) holds, then
∣∣∣∣
∫
fwdλ

∣∣∣∣
2

≤
∫
|f |2dλ

∫
w2dλ

Given dP◦σ̃
dP where P↔ (R1, R2, R3, · · · ).

Alternative Representation for Px: By Riesz, there exists {µx}x ∫
T such that {πi} (Rif)(x) =

∫
T f(y)dµ

(i)
x (y) =∫

f(y)Pi(dy|x)

R1(f1R2(f2h))(x) =

∫ ∫
f1(y1)f2(y2)h2(y2)dµy1

(y2)dµx(y1)

=

∫ ∫
f1(y1)f2(y2)h2(y2)P2(dy2|y1)P1(dy1|x)

R(f1R(f2 · · ·R(fnh) · · · )(x) =
∫ ∫

· · ·
∫
f1(y1)f2(y2) · · · fn(yn)hn(yn)P (dyn|yn−1) · · ·P (dy1|x)

cylinder set σ(Ei+1) ⊂ Ei,

Px(cyl
n) =

∫

E1

· · ·
∫

En

hn(yn)Pn(dyn|yn−1)Pn−1(dyn−1|yn−2) · · ·P1(dy1|x)

where
∫
E1
· · ·

∫
En
hn(yn)Pn(dyn|yn−1)P = Px(cyl).

3. A Transfer Operator

A popular tool for deciding if a candidate for a wavelet basis is in fact an ONB uses a certain transfer
operator. Variants of this operator is used in diverse areas of applied mathematics. It is an operator which
involves a weighted average over a finite set of possibilities. Hence it is natural for understanding random
walk algorithms. As remarked in for example [15, 16, 17, 10], it was also studied in physics, for example by
David Ruelle who used to prove results on phase transition for infinite spin systems in quantum statistical
mechanics. In fact the transfer operator has many incarnations (many of them known as Ruelle operators),
and all of them based on N -fold branching laws.

In our wavelet application, the Ruelle operator weights in input over the N branch possibilities, and the
weighting is assigned by a chosen scalar function w. the and the w-Ruelle operator is denoted Rw. In the
wavelet setting there is in addition a low-pass filter function m0 which in its frequency response formulation
is a function on the d-torus Td = Rd/Zd.

Since the scaling matrix A has integer entries A passes to the quotient Rd/Zd, and the induced transfor-
mation rA : Td → Td is an N -fold cover, where N = |detA|, i.e., for every x in Td there are N distinct points
y in Td solving rA(y) = x.

In the wavelet case, the weight function w is w = |m0|2. Then with this choice of w, the ONB problem for
a candidate for a wavelet basis in the Hilbert space L2(Rd) as it turns out may be decided by the dimension
of a distinguished eigenspace for Rw, by the so called Perron-Frobenius problem.
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This has worked well for years for the wavelets which have an especially simple algorithm, the wavelets
that are initialized by a single function, called the scaling function. These are called the multiresolution
analysis (MRA) wavelets, or for short the MRA-wavelets. But there are instances, for example if a problem
must be localized in frequency domain, when the MRA-wavelets do not suffice, where it will by necessity
include more than one scaling function. And we are then back to trying to decide if the output from the
discrete algorithm, and the ON representation is an ONB, or if it has some stability property which will
serve the same purpose, in case where asking for an ONB is not feasible.

4. Future Directions

The idea of a scientific analysis by subdividing a fixed picture or object into its finer parts is not unique
to wavelets. It works best for structures with an inherent self-similarity; this self-similarity can arise from
numerical scaling of distances. But there are more subtle non-linear self-similarities. The Julia sets in the
complex plane are a case in point [3, 5, 7, 9, 18, 19]. The simplest Julia set come from a one parameter family
of quadratic polynomials ϕc(z) = z2 + c, where z is a complex variable and where c is a fixed parameter.
The corresponding Julia sets Jc have a surprisingly rich structure. A simple way to understand them is
the following: Consider the two brances of the inverse β± = z 7→ ±√z − c. Then Jc is the unique minimal
non-empty compact subset of C, which is invariant under {β±}. (There are alternative ways of presenting
Jc but this one fits our purpose. The Julia set J of a holomorphic function, in this case z 7→ z2 + c,
informally consists of those points whose long-time behavior under repeated iteration , or rather iteration
of substitutions, can change drastically under arbitrarily small perturbations.) Here “long-time” refers to
largen n, where ϕ(n+1)(z) = ϕ(ϕ(n)(z)), n = 0, 1, ..., and ϕ(0)(z) = z. Please see figures 1 and 2 for examples
of Julia set graphs.

Figure 1. Julia set graphed using Mathematica for c = −1. [4], [6], [8]

It would be interesting to adapt and modify the Haar wavelet, and the other wavelet algorithms to the
Julia sets. The two papers [11, 12] initiated such a development. Then an attempt to adapt and modify
the Haar wavelet to the Julia sets was made, [13] however, there were some limitations in finding the filters.
Perhaps trying another fractal set such as tent map or others may work.
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Figure 2. Julia set graphed using Mathematica for c = 0.45− 0.1428i. [4], [6], [8]

4.1. Orthonormal bases generated by Cuntz algebras. We present new results from [13] by borrowing
section 3 and part of section 2 from [13] in the rest of this subsection 4.1. It gives a general criterion for a
family generated by the Cuntz isometries to be an orthonormal basis.

Theorem 4.1. [13] Let H be a Hilbert space and (Si)
N−1
i=0 be a representation of the Cuntz algebra ON . Let

E be an orthonormal set in H and f : X → H a norm continuous function on a topological space X with the
following properties:

(i) E = ∪N−1
i=0 SiE.

(ii) span{f(t) : t ∈ X} = H and ||f(t)||= 1, for all t ∈ X.
(iii) There exist functions mi : X → C, gi : X → X, i = 0, . . . , N − 1 such that

(4.1) S∗
i f(t) = mi(t)f(gi(t)), t ∈ X.

(iv) There exist c0 ∈ X such that f(c0) ∈ spanE.
(v) The only function h ∈ C(X) with h ≥ 0, h(c) = 1, ∀ c ∈ {x ∈ X : f(x) ∈ spanE}, and

(4.2) h(t) =

N−1∑

i=0

|mi(t)|2h(gi(t)), t ∈ X ⇐⇒ Rh = h

are the constant functions.

Then E is an orthonormal basis for H.

Proof. Define

h(t) :=
∑

e∈E
|〈f(t) , e〉|2 = ||Pf(t)||2, t ∈ X

where P is the orthogonal projection onto the closed linear span of E .
Since t 7→ f(t) is norm continuous we get that h is continuous. Clearly h ≥ 0. Also, if f(c) ∈ spanE , then

||Pf(c)||= ||f(c)||= 1 so h(c) = 1. In particular, from (ii) and (iv), h(c0) = 1. We check (4.2). Since the sets
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SiE , i = 0, . . .N − 1 are mutually orthogonal, the union in (i) is disjoint. Therefore for all t ∈ X :

h(t) =

N−1∑

i=0

∑

e∈E
|〈f(t) , Sie〉|2 =

N−1∑

i=0

∑

e∈E
|〈S∗

i f(t) , e〉|2 =

N−1∑

i=0

|mi(t)|2
∑

e∈E
|〈f(gi(t)) , e〉|2 =

=

N−1∑

i=0

|mi(t)|2h(gi(t))

By (v), h is constant and, since h(c0) = 1, h(t) = 1 for all t ∈ X . Then ||Pf(t)||= 1 for all t ∈ X . Since
||f(t)||= 1 it follows that f(t) ∈ spanE for all t ∈ X . But the vectors f(t) span H so spanE = H and E is an
orthonormal basis.

�

Remark 4.2. [13] The operators of the form

Rh(t) =

N−1∑

i=0

|mi(t)|2h(gi(t)), t ∈ X,h ∈ C(X),

that appear in (4.2), are sometimes called Ruelle operators or transfer operators, see e.g. [1].

4.1.1. Piecewise exponential bases on fractals.

Example 4.3. [13] We consider affine iterated function systems with no overlap. Let R be a d×d expansive
real matrix, i.e., all the eigenvalues of R have absolute value strictly greater than 1.Let B ⊂ Rd a finite set
such that N = |B|. Define the affine iterated function system

(4.3) τb(x) = R−1(x+ b) (x ∈ R
d, b ∈ B)

By [14] there exists a unique compact subset XB of Rd which satisfies the invariance equation

(4.4) XB = ∪b∈Bτb(XB)

XB is called the attractor of the iterated function system (τb)b∈B . Moreover XB is given by

(4.5) XB =

{ ∞∑

k=1

R−kbk : bk ∈ B for all k ≥ 1

}

Also from [14] there is a unique probability measure µB on Rd satisfying the invariance equation

(4.6)

∫
fdµB =

1

N

∑

b∈B

∫
f ◦ τbdµB

for all continuous compactly supported functions f on R. We call µB the invariant measure for the iterated
function system (IFS) (τb)b∈B . By [14], µB is supported on the attractor XB. We say that the IFS has no
overlap if µB(τb(XB) ∩ τ ′b(XB)) = ∅ for all b 6= b′ in B.

Assume that the IFS (τb)b∈B has no overlap. Define the map r : XB → XB

(4.7) r(x) = τ−1
b (x), if x ∈ τb(XB)

Then r is an N -to-1 onto map and µB is strongly invariant for r. Note that r−1(x) = {τb(x) : b ∈ B} for
µB.a.e. x ∈ XB.
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We apply Theorem 4.1 to the setting of Example 4.3, in dimension d = 1 for affine iterated function
systems, when the set 1

RB has a spectrum L [13].

Definition 4.4. [13] Let L in R, |L| = N , R > 1 such that L is a spectrum for the set 1
RB. We say

that c ∈ R is an extreme cycle point for (B,L) if there exists l0, l1, . . . , lp−1 in L such that, if c0 = c,

c1 = c0+l0
R , c2 = c1+l1

R . . . cp−1 =
cp−2+lp−2

R then
cp−1+lp−1

R = c0, and |mB(ci)| = 1 for i = 0, . . . , p− 1 where

mB(x) =
1

N

∑

b∈B

e2πibx x ∈ R.

Proposition 4.5. [13] Let (mi)
N−1
i=0 be a QMF basis. Define the operators on L2(X,µ)

(4.8) Si(f) = mif ◦ r, i = 0, . . . , N − 1

Then the operators Si are isometries and they form a representation of the Cuntz algebra ON , i.e.

(4.9) S∗
i Sj = δij , i, j = 0, . . . , N − 1,

N−1∑

i=0

SiS
∗
i = I

The adjoint of Si is given by the formula

(4.10) S∗
i (f)(z) =

1

N

∑

r(w)=z

mi(w)f(w)

Proof. We compute the adjoint: take f , g in L2(X,µ). We use the strong invariance of µ.

〈S∗
i f , g〉 =

∫
fmig ◦ r dµ =

∫
1

N

∑

r(w)=z

mi(w)f(w)g(z)dµ(z)

Then (4.10) follows. The Cuntz relations in (4.9) are then easily checked with Proposition 2.6 in [13]. �

Definition 4.6. [13] We denote by L∗ the set of all finite words with digits in L, including the empty word.
For l ∈ L let Sl be given as in (4.8) where ml is replaced by the exponential el. If w = l1l2 . . . ln ∈ L∗ then
by Sw we denote the composition Sl1Sl2 . . . Sln .

Theorem 4.7. [13] Let B ⊂ R, 0 ∈ B, |B| = N , R > 1 and let µB be the invariant measure associated to
the IFS τb(x) = R−1(x+ b), b ∈ B. Assume that the IFS has no overlap and that the set 1

RB has a spectrum
L ⊂ R, 0 ∈ L. Then the set

E(L) = {Swe−c : c is an extreme cycle point for (B,L), w ∈ L∗}
is an orthonormal basis in L2(µB). Some of the vectors in E(L) are repeated but we count them only once.

Proof. Let c be an extreme cycle point. Then |mB(c)| = 1. Using the fact that we have equality in the
triangle inequality (1 = |mB(c)| ≤ 1

N

∑
b∈B|e2πibc| = 1) , and since 0 ∈ B, we get that e2πibc = 1 so bc ∈ Z

for all b ∈ B. Also there exists another extreme cycle point d and l ∈ L such that d+l
R = c. Then we have:

Sle−c(x) = e2πilxe2πi(Rx−b)(−c), if x ∈ τb(XB). Since bc ∈ Z and R(−c) + l = −d, we obtain

(4.11) Sle−c = e−d

We use this property to show that the vectors Swe−c, Sw′e−c′ are either equal or orthogonal for w,w′ in L∗

and c, c′ extreme cycle points for (B,L). Using (4.11), we can append some letters at the end of w and w′

suh that the new words have the same length:

Swe−c = Swαe−d, Sw′e−c′ = Sw′βe−d′ , |wα| = |w′β| where d, d′ are cycle points.

Moreover, repeating the letters for the cycle points d and d′ as many times as we want, we can assume that
α ends in a repetition of the letters associated to d and similarly for β and d′. But, since |wα| = |w′β|, the
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Cuntz relations imply that Swαe−d ⊥ Sw′βe−d′ or wα = w′β. Assume |w| ≤ |w′|. Then α = w′′β for some
word w′′. Then Swαe−d ⊥ Sw′βe−d iff Sαe−d ⊥ Sw′′βe−d′ . Also, α consists of repetitions of the digits of the
cycle associated to d and similarly for d′. So Sαe−d = e−f , Sw′′βe−d′ = e−f ′ , and all points d, d′, f, f ′, c, c′

all belong to the same cycle. So the only case when Swe−c is not orthogonal to Sw′e−c′ is when they are
equal.

Next we check that the hypotheses of Theorem 4.1 are satisfied. We let f(t) = e−t ∈ L2(µB). To check
(i) we just to have to see that e−c ∈ ∪l∈LSlE(L). But this follows from (4.11). Requirement (ii) is clear. For
(iii) we compute

S∗
l e−t(x) =

1

N

∑

b∈B

e−2πil· 1
R
(x+b)e−2πit· 1

R
(x+b) = e−2πx· 1

R
(t+l) 1

N

∑

b∈B

e−2πib( t+l
R

) =

= mB

(
t+ l

R

)
e− t+l

R
(x)

So (iii) is satisfied with ml(t) = mB(
t+l
R ), gl(t) =

t+l
R .

For (iv) take c0 = −c for any extreme cycle point ( 0 is always one). For (v), take h continuous on R ,
0 ≤ h ≤ 1, h(c) = 1 for all c with e−c ∈ spanE(L), and

h(t) =
∑

l∈L

∣∣∣∣mB

(
t+ l

R

)∣∣∣∣
2

h

(
t+ L

R

)
:= Rh(t)

In particular, we have h(c) = 1 for every extreme cycle point c. Assume h 6≡ 1. First we will restrict

our attention to t ∈ I := [a, b] with a ≤ minL
R−1 , b ≥ maxL

R−1 , and note that gl(I) ⊂ I for all l ∈ L. Let

m = mint∈Ih(t). Then let h′ = h −m, assume m < 1. Then Rh′(t) = h′(t) for all t ∈ R, h′ has a zero
in I and h ≥ 0 on I, h′(z0) = 0. But this implies that |mB(gl(z0))|2h′(gl(z0)) = 0 for all l ∈ L. Since∑

l∈L|mB(gl(z0))|2 = 1, it follows that for one of the l0 ∈ L we have h′(gl0(z0)) = 0. By induction, we
can find zn = gln−1

· · · gl0z0 such that h′(zn) = 0. We prove that z0 is a cycle point. Suppose not. Since
mB has finitely many zeros, for n large enough gαk

· · · gα1
zn is not a zero for mB, for any choice of digits

α1, . . . , αk in L. But then, by using the same argument as above we get that h′(gαk
· · · gα1

zn) = 0 for any
α1, . . . , αk ∈ L. The points {gαk

· · · gα1
zn : α1, ...αk ∈ L, k ∈ N} are dense in the attractor XL of the IFS

{gl}l∈L, thus h
′ is constant 0 on XL. But the extreme cycle points c are in XL and since h(c) = 1 we have

0 = h′(c) = 1−m, so m = 1. Thus h = 1 on I. Since we can let a→ −∞ and b→∞ we obtain that h ≡ 1.
�

Remark 4.8. [13] The functions in E(L) are piecewise exponential. The formula for Sl1...lne−c is

(4.12) Sl1...lne−c(x) = eα(b,l,c) · el1+Rl2+...+Rn−1ln−1+Rn(−c)(x)

where α(b, l, c) = −[b1l2+(Rb1+b2)l3+ ...+(Rn−2b1+ ...+bn−1)ln]+(Rn−1b1+ ...+bn) ·c if x ∈ τb1 ...τbnXB

. We have

Sl1 ...Slne−c(x) = el1(x)el2 (rx)...eln(r
n−1x)ec(r

nx)

If x ∈ τb1 ...τbnXB then rx ∈ τb2 ...τbnXB, r
n−1x ∈ τbnXB. So

rx = Rx− b1
r2x = Rrx − b2 = R2x−Rb1 − b2

...

rn−1x = Rn−1x−Rn−2b1 − ...−Rbn−2 − bn−1

rnx = Rnx−Rn−1b1 −Rn−2b2 − ...−Rbn−1 − bn.
The rest follows from a direct computation.
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Corollary 4.9. [13] In the hypothesis of Theorem 4.1, if in addition B,L ⊂ Z and R ∈ Z, then there exists
a set Λ such that {eλ : λ ∈ Λ} is an orthonormal basis for L2(µB).

Proof. If everything is an integer then, it follows from Remark 4.8 that Swe−c is an exponential function for
all w and extreme cycle points c. Note that, as in the proof of Theorem 4.1, bc ∈ Z for all b ∈ B.

�

Example 4.10. [13] We consider the IFS that generates the middle third Cantor set: R = 3, B = {0, 2}.
The set 1

3{0, 2} has spectrum L = {0, 3/4}. We look for the extreme cycle points for (B,L).

We need |mB(−c)| = 1 so | 1+e2πi2c

2 | = 1, therefore c ∈ 1
2Z. Also c has to be a cycle for the IFS g0(x) = x/3,

g3/4(x) =
x+3/4

3 so 0 ≤ c ≤ 3/4
3−1 = 3/8. Thus, the only extreme cycle is {0}. By Theorem 4.1 E = {Sw1 :

w ∈ {0, 3/4}∗} is an orthonormal basis for L2(µB). Note also that the numbers e2πiα(b,l,c) in formula (4.12)
are ±1 because 2πiB · L ⊂ πiZ.
4.1.2. Walsh bases. In the following, we will focus on the unit interval, which can be regarded as the attractor
of a simple IFS and we use step functions for the QMF basis to generate Walsh-type bases for L2[0, 1] [13].

Example 4.11. [13] The interval [0, 1] is the attractor of the IFS τ0x = x
2 , τ1x = x+1

2 , and the invariant
measure is the Lebesgue measure on [0, 1]. The map r defined in Example 4.3 is rx = 2xmod1. Let m0 = 1,
m1 = χ[0,1/2) − χ[1/2,1). It is easy to see that {m0,m1} is a QMF basis. Therefore S0, S1 defined as in
Proposition 4.5 form a representation of the Cuntz algebra O2.

Proposition 4.12. [13] The set E := {Sw1 : w ∈ {0, 1}∗} is an orthonormal basis for L2[0, 1], the Walsh
basis.

Proof. We check the conditions in Theorem 4.1. To see that (i) holds note that S01 = 1. Define f(t) = et,
t ∈ R. (ii) is clear. For (iii) we compute

S∗
1et(x) =

1

2
(e2πit·x/2 + e2πit·(x+1)/2) = e2πit·x/2

1

2
(1 + e2πit/2)

S∗
1et(x) =

1

2
(e2πit·x/2 − e2πit·(x+1)/2) = e2πit·x/2

1

2
(1− e2πit/2)

Thus (iii) holds with m0(t) =
1
2 (1+ e

2πit/2), m1(t) =
1
2 (1− e2πit/2), g0(t) = g1(t) =

t
2 . Since e0 = 1 it follows

that (iv) holds.
For (v) take h continuous on R, 0 ≤ h ≤ 1, h(c) = 1 for all c ∈ R with et ∈ spanE , in particular h(0) = 1

and

h(t) =

∣∣∣∣
1

2
(1 + e2πit/2)

∣∣∣∣
2

h(t/2) +

∣∣∣∣
1

2
(1 − e2πit/2)

∣∣∣∣
2

h(t/2) = h(t/2)

Then h(t) = h(t/2n) for all t ∈ R, n ∈ N. Letting n→∞ and using the continuity of h, we get h(t) = h(0) = 1
for all t ∈ R. Since all conditions hold, we get that E is an orthonormal basis. That E is actually the Walsh
basis follows from the following calculations: for |w| = n in {0, 1}∗ let n =

∑
i xi2

i be the base 2 expansion
of n. Because S0f = f ◦ r, S1f = m1f ◦ r and m0 ≡ 1 we obtain the following decomposition:

Sw1(x) = m1(r
i1x) ·m1(r

i2x) · · ·m1(r
ikx), where i1, i2, . . . ik correspond to those i with xi = 1

Also m1(r
ix) = m1(2

ixmodi) are the Rademacher functions and thus we obtain the Walsh basis (see e.g.
[20]).

�

The Walsh bases can be easily generalized by replacing the matrix

1√
2

(
1 1
1 −1

)
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which appears in the definition of the filters m0,m1, with an arbitrary unitary matrix A with constant first
row and by changing the scale from 2 to N .

Theorem 4.13. [13] Let N ∈ N, N ≥ 2. Let A = [aij ] be an N × N unitary matrix whose first row is

constant 1√
N
. Consider the IFS τjx = x+j

N , x ∈ R, j = 0, . . . , N − 1 with the attractor [0, 1] and invariant

measure the Lebesgue measure on [0, 1]. Define

mi(x) =
√
N

N−1∑

j=0

aijχ[j/N,(j+1)/N ](x)

Then {mi}N−1
i=0 is a QMF basis. Consider the associated representation of the Cuntz algebra ON . Then the

set E := {Sw1 : w ∈ {0, ...N − 1}∗} is an orthonormal basis for L2[0, 1].

Proof. We check the conditions in Theorem 4.1. Let f(t) = et, t ∈ R.
To check (i) note that S01 ≡ 1. (ii) is clear. For (iii) we compute:

S∗
ket =

1

N

N−1∑

j=0

mk(τjx)et(τjx) =
1√
N

N−1∑

j=0

akje
2πit·(x+j)/N = e2πit·x/N

1√
N

N−1∑

j=0

akje
2πit·j/N

So (iii) is true with mk(t) =
1√
N

∑N−1
j=0 akje

2πit·j/N and gk(t) =
t
N .

(iv) is true with c0 = 0. For (v) take h ∈ C(R), 0 ≤ h ≤ 1, h(c) = 1 for all c ∈ R with ec ∈ spanE ( in
particular h(0) = 1), and

h(t) =

N−1∑

k=0

|mk(t)|2h(t/N) = h(t/N)

N−1∑

k=0

1

N
|
N−1∑

j=0

akje
−2πit·j/N |2 = h(t/N) · 1

N
||Av||2

where v = (e−2πit·j/N )N−1
j=0 . Since A is unitary, ||Av||2= ||v||2= N . Then h(t) = h(t/Nn). Letting n → ∞

and using the continuity of h we obtain that h(t) = 1 for all t ∈ R. Thus, Theorem 4.1 implies that E is an
orthonormal basis.

�

Remark 4.14. [13] We can read the constants that appear in the step function Sw1 from the tensor of A
with itself n times, where n is the length of the word w.

Let A be an N ×N matrix, B an M ×M matrix. Then A⊗B has entries :

(A⊗B)i1+Mi2,j1+Mj2 = ai1j1bi2j2 , i1, j1 = 0, . . . , N − 1, i2, j2 = 0, . . . ,M − 1

A⊗B =




Ab0,0 Ab0,1 · · · Ab0,M−1

Ab1,0 Ab1,1 · · · Ab1,M−1

...
...

. . .
...

AbM−1,0 AbM−1,1 · · · AbM−1,M−1




The matrix A⊗n is obtained by induction, tensoring to the left: A⊗n = A⊗A⊗(n−1).
Thus A⊗A⊗A⊗ · · · ⊗A, n times, has entries

A⊗n
i0+Ni1+N2i2+···+Nn−1in−1,j0+Nj1+···+Nn−1jn−1

= ai0j0ai1j1 . . . ain−1jn−1

Now compute for i0, . . . in−1 ∈ {0, . . . , N − 1}:
Si0...in−1

1(x) = mi0(x)mi1 (rx) . . . min−1
(rn−1x)

Suppose x ∈ [ k
Nn ,

k+1
Nn ), 0 ≤ k < Nn and k = Nn−1j0+N

n−2j1+· · ·+Njn−2+jn−1, where 0 ≤ j0, . . . , jn−1 <
N .
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Then x ∈ [ j0N ,
j0+1
N ), rx = (Nx)mod1 ∈ [ j1N ,

j1+1
N ), . . . , rn−1x = (Nn−1x)mod1 ∈ [ jn−1

N , jn−1+1
N ), so mi0(x) =√

Nai0j0 , mi1(rx) =
√
Nai1j1 , . . . ,min−1

(rn−1x) =
√
Nain−1jn−1

hence

Si0...in−1
1(x) =

√
Nnai0j0 . . . ain−1jn−1

=
√
NnA⊗n

i0+Ni1+N2i2+···+Nn−1in−1,j0+Nj1+···+Nn−1jn−1

Example 4.15. [13] The pictures in Figure 3 show the Walsh functions that correspond to the scale N = 4
and the matrix

A =




1
2

1
2

1
2

1
2√

2
2 −

√
2
2 0 0

0 0
√
2
2 −

√
2
2

1
2

1
2 − 1

2 − 1
2




for the words of length 2, indicated at the top.

5. Multi-resolutions and generalized wavelet representations.

As is illustrated in [16], and the references given there; as well as in the papers [10, 11, 12, 13], there is a
host of problems from analysis of fractals and more generally in stochastic analysis which lend themselves
to the present multi-resolution approach. Below we discuss related wavelet representations.

Lemma 5.1. Let (Ω,F ,P) be a probablistic space, and let A : Ω → X be a random variable with values in
a fixed measure space (X,BX), then VAf := f ◦ A defines an isometry. L2(X,µA)→ L2(Ω,P) where µA is
the law of A, i.e., µA(∆) := P(A−1(∆)), for all ∆ ∈ BX ; and V ∗

A(x) = EA=x(ψ|FA) for all ψ ∈ L2(Ω,P),
and all x ∈ X.

If (Ω,F ,P) is a solenoid probability span on ΩX =
∏∞

n=0X , we shall apply the lemma to the each vertices
πn : ΩX → X given by πn(x0x1x2 · · · ) = xn, for all n ∈ N0, and the isometry can span to πn will

simply be denoted Vn. The sigma-algebra given by πn will be denoted Fn. Let (X,B) be fixed, let Rf(x) =∫
f(y)µ(dy|x), f ∈ F(X,B) and Rh = h i.e., µ(· · · |x) is a probability space and (X,B) a.e. x ∈ X . Suppose

there exists an X and w such that
∫
µ(B|x)dλ(x) =

∫
B
wdλ, for all B ∈ BX then there exists a probability

space (Ω,P) which is the all paths on (X,B) such that
∫

Ω

(f0 ◦ π0)(f1 ◦ π1) · · · (fn ◦ πn)dP =

∫

X

f0(x)R(f,R(f2 · · ·R(fn) · · · )(x)dλ(x)

and P ◦ π−1
1 = ((W ◦ π0)dP) ◦ π−1

0 . Moreover,

suppt(P) = Solσ(X) ⇐⇒
R[(f ◦ σ)g] = fR(g), ∀f, g ∈ F(X,B).

Suppose (R, λ) has the representation (Rf)(x) =
∫
X f(x)µ(dy, x) where µ(,x) is a measure of (X,B) for

all x ∈ X , and each function X µ(B, x) is measurable for all B ∈ B. This is only a mild restriction.
Note that a definition by application Riesz if X is locally compact Hausdorff and BX is the Borel-

sigma algebra. Suppose R(1) = 1, then the following representation of P on (Sol(X), cylindersets, P) are
equivalent: The following are equivalent

(i)
∫
Sol(f ◦ π0)(g ◦ πn)dP =

∫
X f(x)(Rng)(x)dλ(x)

(ii) Probw.r.t P(π0 = x, π1 ∈ B1, · · · , πk ∈ Bk) =
∫
B1

∫
B2
· · ·

∫
Bk
µ(dy1|x)µ(dy2|y1) · · ·µ(dyk|yk−1) for all

k and for all Bi ∈ BX ;
(iii) Probw.r.t P(π0 = x, π1 ∈ B1, · · · , πk ∈ Bk) = R(χB1

R(χB2
R · · ·R(χBk

) · · · (x)) = Ex(· · · ) =
∫
Sol · · · dPx

In the case R R1 = 1. But if not, then pick h such that Rh = h, and set R′(f) = R(fh)
h will R′(1) = 1.
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Figure 3. Walsh functions graph Sw1 for words w of length 2. [13], [2]
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Prob(π0 = x, π1 = y1, · · · , πk = yk)

1

Nk
W (y1)W (y2) · · ·W (yk)

Pr(x→ y1)Pr(y1 → y2) · · ·Pr(yk−1 → yk)

Rf(x) =

∫

X

f(y)µ(dy|x) represent R as an....

µ(B|x) := R(χB)(x), ∀B ∈ B
= Prob(π1 ∈ B|π0 = x).

More generally:

Prob(π0 = x, π1 ∈ B1, · · · , πk ∈ Bk)

=

∫

B1

∫

B2

· · ·
∫

Bk

µ(dy1|x)µ(dy2|y1) · · ·µ(dyk|yk−1)

= R(χB1
R(χB2

R · · ·R(χBk
) · · · (x))

Same manner prop of {µ(−− |x)}x∈X .

Lemma 5.2. If B ∈ BX then
∫

X

µ(B|x)dλ(x) =
∫

B

W (x)dλ(x), where W =
dλ(R)

dλ
.

Proof. Let {µ(B|x)}x∈X be a Markov process by x ∈ X and (X,B) is a fixed measure space and let P be
the corresponding path space measure P(π0 = x, π1 ∈ B1, · · · , πk ∈ Bk). Let

σ ∈ End(XB) =

∫

B1

∫

B2

· · ·
∫

Bk

µ(dy1|x)µ(dy2|y1) · · ·µ(dyk|yk−1)

then P is ... as equation σ−solenoid Solσ(X) if and only if

P(πk−1 ∈ B ∩ σ−1(A)|πk = x) = χA(x)P(πk ∈ B|πk = x)

if and only if supp(P) ⊂ Solσ(X). �

Lemma 5.3. Suppose R has a representation

(5.1) R(χB)(x) = µ(B|x), B ∈ BX , x ∈ X.
The following are equivalent: as described, i.e., (Rf)(x) =

∫
X
f(x)µ(dy|x); then

(5.2) R[(f ◦ σ)g](x) = f(x)R(g)(x), ∀x, ∀f, g.
If and only if

(5.3) µ(σ−1(A) ∩B|x) = χA(x)µ(B|x) ∀A,B ∈ B ∀x ∈ X.
Notation: Let {µ(·|x)}x∈X be the family of measures on (x,B) define R as in (5.1); and set µx(·) := µ(·|x)

then (5.2) if and only if (conditional measures):

µx(σ
−1(A)|B) = χA(x), where µx(·|B)

denote the conditional probability i.e.,

µx(σ
−1(A)|B) =

{
1 if x ∈ A
0 if x /∈ A
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µx(σ
−1(A))µx(B|σ−1(A)) =

µx(σ
−1(A) ∩B) = χA(x)µx(B)

µx(σ
−1(A)|B) = χA(x)

Proof.

χA(x)µx(B|σ−1(A)) = µ(B)µx(σ
−1(A)|B)

χA(x)µx(B|σ−1(A)) = χA(x)µx(B) = µ(B)µx(σ
−1(A)|B)µx(B)

�

(i) (LP) m0(0)√
N

= 1 Low-Pass. W = |r0| (Rf)(x) = 1
N

∑
σ(y)=x(Wf)(y)

(ii) R(h) = h∏∞
k=1

m0(t/N
k)√

N
→ |ϕ̂(t)|2

∏∞
k=1

m0(t/N
k)√

N
∈ L2(R)

Theorem 5.4. (X, σ,R, λ)→ Solσ(X). We have

(i) ∃! P such that dist(πk) = µk,
∫
X
fdµR =

∫
X
Rk(f)dλ, and

(ii) P has the property: dP·σ̂
dP = w

Given

X
f−→ R we get

X
f◦πn−−−→ Sol

Vnf := f ◦ πn, where

µn := dist(πn)

Vn : L2(X,µn)
isometry−−−−−→ Sol(X)

Vn : f → f ◦ πn
Here “dist” is short for distribution.

The prove follows from the above discussion.
H : (Ω,F ,P). Let λ be on X and λR << λ Radon-Nikodym on W . Let U be on F ∈ L2(Ω,P),

R(f)dλ =
∫
fwdλ, m0 =

√
W ◦ π0, UF =

√
W ◦ π0F ◦ σ̂.

Theorem 5.5. Let L2(Ω,P), 1, U , ρ. Then there exists a Hilbert space H, a representation ρ of L2(Ω,P)
on H, a unitary operator U on H and a vector ϕ in H such that

ρ(f) = m(f ◦ π0)
f ∈ L∞(X) F → (f ◦ π0)F

(H, ϕ, U, ρ)→ path space measure

(i) (Covariance)

(5.4) Uρ(f) = ρ(f ◦ r)U f ∈ L∞(X).

(ii) (Scaling equation)

(5.5) F → (f ◦ π0)F → (f ◦ σ) ◦ π0
√
W ◦ π0F ◦ σ̂

(iii) (Orthogonality)

(5.6)

∫

Ω

ρ(f)1dP =

∫
(f ◦ π0)dλ =

∫
fdλ
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(iv)

(5.7) U−1F =
1

W ◦ π1
F ◦ σ̂−1 πn(w) = xn

Example 5.6.

UF =
√
W ◦ π0F ◦ σ̂ where σ : X → X

U∗ = U−1

U =
1√
2
f
(x
2

)

Uϕ̂ = mϕ̂ where ϕ̂ ∈ L2(R)

We are interested in finding the filter function analogous to Dutkay-Jorgensen Haar-Cantor filter. m0 =
1+z√

2
.

An attempt to find filter functions for Julia set: Let mi : Xc → C. For Julia set r(z) = zN on T.
µ is Haar measure on T. Strong invariance of µ with respect to r(z).

∫
1

#r−1(z)

∑

r(w)=z

f(w)dz =

∫
f(z)dµ(z)

By Brolin’s theorem there exists a unique µ strongly invariant for r.
Quadrature mirror filter

1

#r−1(z)

∑

r(w)=1

|m0(w)|2 = 1 z ∈ Jc.

We want to find nice m0 and m1.
w2 + c = z ⇒ w± = ±√z − c

1

2
(|m0(w1)|2 + |m0(w2)|2) = 1

1

2
(|m1(w1)|2 + |m1(w2)|2) = 1

1

2
(m0(w1)m1(w1) +m0(w2)m1(w2)) = 1

We are interested in solving the following matrix over polynomial

1√
2

[
m0(w1) m0(w2)
m1(w1) m1(w2)

]

where it is unitary and m0 = 1.
Also, we would like to find m1, high-pass filter

1

2
(m1(

√
z − c) +m1(−

√
z − c)|) = 0

1

2
(|m1(

√
z − c)|2 + |m1(−

√
z − c)|2) = 1

where m1(w) = −m(−w).
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