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Abstract We study certain infinite-dimensional probability measures in connec-
tion with frame analysis. Earlier work on frame-measures has so far focused on the
case of finite-dimensional frames. We point out that there are good reasons for a
sharp distinction between stochastic analysis involving frames in finite vs infinite
dimensions. For the case of infinite-dimensional Hilbert space H, we study three
cases of measures. We first show that, for H infinite dimensional, one must resort
to infinite dimensional measure spaces which properly contain H. The three cases
we consider are: (i) Gaussian frame measures, (ii) Markov path-space measures,
and (iii) determinantal measures.

Keywords Hilbert space, frames, reproducing kernel, Karhunen-Loève

1 Introduction and Setting.

Over the past two decades, frames have proved to be powerful tools in signal pro-
cessing for a number of reasons, especially on account of their resilience to additive
noise, to quantization; and because of their numerical stability in their use in the
reconstruction step, they have improved our ability to capture significant signal
characteristics. Frame theory is now a dynamic subject with applications that
include variety of areas in both mathematics and engineering: operator theory,
harmonic analysis, wavelet theory, sampling theory, nonlinear sparse approxima-
tion, wireless communication, data transmission with erasures, filter banks, signal
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processing, image processing, geophysics, quantum computing, sensor networks,
and more.

In a host of applications, starting with signal and image processing, one makes
use of inner-product spaces (in our case, choices of suitable Hilbert spaces) in
achieving efficient signal-representations. In general, orthogonal expansions are
not available. Nonetheless, in many signal processing problems, it is still possible
to find overcomplete basis expansions, called frame expansions, see the references
cited below. For example, in analysis/synthesis problems, when we sample an ana-
log signal above the Nyquist rate, the amplitudes will be coefficients in a suitable
frame expansion. Such decompositions have received extensive attention in the
literature when the decomposition parameter is assumed discrete; but, nonethe-
less, the frame-decompositions take a probabilistic form which we shall emphasize
below. More generally, staying with the overcomplete framework, we present here
instead a continuous, and a more versatile, probability space approach to these
expansion problems. Our applications include determinantal measures, Gaussian
frame measures; and, more generally, to the setting of Markov path-space mea-
sures.

We study frames in Hilbert space H, i.e., systems of vectors in H which allow
computable representations of arbitrary vectors inH, (especially the case whenH is
infinite-dimensional) in a way that is analogous to more familiar basis expansions.
Frames are also called “over complete” systems, and they generalize the better
known orthonormal bases (O.N.B.s). Their applications include signal processing
and wavelet theory, to name only a few.

Frames (Definition 2) are systems of vectors in Hilbert space H which allow
for “effective” analysis and reconstruction for vectors in H; details below. As is
known from the literature on frames, both pure and applied (see e.g., [Pe15],
[FJMP15], [AYB15], [HoLa15], [PeHaMo15], [QuHiSh15]), there is a scale of “basis-
like” properties that frames may have: in one end of the spectrum, there are the
orthonormal bases (O.N.B.s), then Parseval frames, and in the other end of the
spectrum, there are systems of vectors with frame-like properties, but where we
may lack one of the two bounds, lower or upper, but nonetheless, for some other
reason, we may still get analysis and reconstruction formulas.

Since the early days of Hilbert space axioms and quantum theory and potential
theory, probability has always played an important role, for example such tools as
balayage; but it is not until relatively recently that the role of probability has been
studied systematically in connection with frame analysis. In our present approach,
we have been especially inspired by the important paper by Ehler and Okoudjou
[Eh12], [EhOk12], [EhOk13]; but the work in [Eh12], [EhOk12], [EhOk13]; and in
related papers, has so far focused on the case of finite-dimensional frames. As we
point out below, there are good reasons for a sharp distinction between stochastic
analysis involving frames in finite vs infinite dimensions. The three cases, of mea-
sures in infinite dimensions we shall consider are the Gaussian measures, Markov
path-space measures, and determinantal measures; but our present emphasis will
be on certain Gaussian families (section 4).

In our paper, we shall adopt a general notion of probabilistic frames, referring
simply to methods in frame theory involving probability and stochastic analysis.
By “frame analysis” we shall refer to a setup where it is possible to construct the
dual pair of operators, an analysis operator, and an associated synthesis operator.
For technical details, see the next section.
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Frames let us formulate a harmonic analysis of practical problems, but, so far,
there are only few harmonic analysis tools available for the analysis of the frames
themselves. Nonetheless, there are beginnings to a theory of “frame measures,” but
so far only covering the case when H is finite-dimensional. Our first result (section
3) shows that, unless one passes to a larger measure space, the notions of frame
measures in finite dimension simply do not go over to infinite-dimensional H. On
the other hand, we show (section 4) that there is a way to build ambient measures
spaces in such a way that we arrive at a rich family of Gaussian wavelet measures,
covering the case when H is infinite-dimensional.

We also study other families of measures associated with frames in infinite di-
mensions, e.g. Markov measures, and determinantal measures which seem promis-
ing. This endeavor takes advantage of the probabilistic features already inherent
in the axioms of Hilbert space as they were developed in the foundations of quan-
tum theory; i.e., the study of transition probability, referring to transition between
states, for example states of different energy levels in atomic models.

The applied mathematicians who use frames have, so far, only developed very
few quantitative gauges which will tell us how “different” two given frames might
be; or will allow us to make precise “how much” better one frame is as compared
to anyone in a set of alternatives.

1.1 Frame Measures

To help readers appreciate some key features regarding frame measures in the
finite dimensional case, and their applications, we review some highpoints from
[EhOk13].

In [Eh12], [EhOk12], [EhOk13]; finite frames in RN are considered, where frame
vectors are viewed as discrete mass distributions on RN , the frame concepts are
extended to probability measures, and the properties of probabilistic frames are
summarized. Let P := P(B,RN ) denote the collection of probability measures on
RN with respect to the Borel σ−algebra B. The support of µ ∈ P, denoted by
supp(µ), is the sent of all x ∈ RN such that for all open neighborhoods Ux ⊂ RN
of x, we have µ(Ux) > 0. Set P(K) := P(B,K) for those probability measures in
P whose support is contained in K ⊂ RN . The linear span of supp(µ) in RN is
denoted by Eµ.

Definition 1 [EhOk13] A Borel probability measure µ ∈ P is a probabilistic frame

if there exists 0 < A ≤ B <∞ such that

A‖x‖2 ≤
∫
RN
|〈x, y〉|2dµ(y) ≤ B‖x‖2, for all ∈ RN . (1)

The constants A and B are called lower and upper probabilistic frame bounds,
respectively. When A = B, µ is called a tight probabilistic frame.

Let

P2 := P2(RN ) = {µ ∈ P : M2
2 (µ) :=

∫
RN
‖x‖2dµ(x) <∞} (2)

be the (convex) set of all probability measures with finite second moments. Frame
measures in RN are in P2, and they satisfy Eµ = RN . There exists a natural metric
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on P2 called the 2−Wasserstein metric, which is given by

W 2
2 (µ, ν) := min{

∫
RN×RN

‖x− y‖2dγ(x, y), γ ∈ Γ (µ, ν)}, (3)

where Γ (µ, ν) is the set of all Borel probability measures γ on RN × RN whose
marginals are µ and ν, respectively, i.e., γ(A×RN ) = µ(A) and γ(RN ×B) = ν(B)
for all Borel subsets A, B in RN . [EhOk13]

Let µ ∈ P be a probabilistic frame. The probabilisitic analysis operator is given
by

Tµ : RN → L2(RN , µ), x 7→ 〈x, ·〉. (4)

Its adjoint operator is defined by

T ∗µ : L2(RN , µ)→ RN , f 7→
∫
RN

f(x)xdµ(x) (5)

and is called the probabilistic synthesis operator. The probabilistic Gramiam op-
erator of µ is Gµ = TµT

∗
µ . [EhOk13] The probabilistic frame operator of µ is

Sµ = T ∗µTµ,

Sµ : RN → RN , Sµ(x) =

∫
RN
〈x, y〉ydµ(y).

The Gramian of µ, Gµ is the integral operator defined on L2(RN , µ) by

Gµf(x) = TµT
∗
µf(x) =

∫
RN
〈x, y〉f(y)dµ(y). (6)

Note that H = RN and N < ∞ in [EhOk13]. In the next section we extend these
tools to infinite dimensions, pointing out a number of subtleties, and differences
between the two cases, finite vs infinite.

1.2 Infinite Dimensions

If H is an infinite dimensional Hilbert space, we shall show that the formulas (2),
(3) and (5) carry over from RN , N < ∞, to dimH = ℵ0; but it will be necessary
to create an ambient measure space (Ω,F) where Ω is a certain vector space
containing H. We will show that in this case, the four formulas carry over with
the following modifications: In (4), we show that y 7→ 〈x, y〉 extends from H to Ω;
and the integral in (5) will then be

x =

∫
Ω

〈x, ω〉̃ωdµ(ω) in H (7)

where 〈, 〉̃ refers to this extension. But appropriate generalizations of (6) are much
more subtle.

The extension of the results in (4) and (5) will involve this H → Ω extension
∼: In (4), we will consider an analysis operator Tµ : H → L2(Ω,µ),

H 3 x→ 〈x, ·̃〉 (on Ω);
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and then (5) will read as follows:

L2(Ω,µ) 3 f
T∗µ7−→
∫
Ω

f(ω)ωdµ(ω) ∈ H. (8)

Note that, since H ( Ω, it is a non-trivial assertion that the RHS in (8) is a vector
in H. We now turn to the technical details.

Definition 2 Let H be a Hilbert space (over R, but C will work also with small
modifications). Let α, β ∈ R+, 0 < α ≤ β <∞.

Set

F (α, β) := {{ϕn}n∈N; α‖x‖2 ≤
∑
n

|〈x, ϕn〉|2 ≤ β‖x‖2,∀ϕn ∈ H}. (9)

Let (Ω,F) be a measure space, Ω a set, F a σ−algebra.
We assume further that Ω is a vector space equipped with a weak∗-topology

such that the dual Ω′ satisfies

Ω′ ⊂ H ⊂ Ω, and (10)

the inclusion mappings in (10) are assumed continuous with respect to the respec-
tive topologies; and Ω′ is dense in H. Equation (10) is an example of a Gelfand

triple. Hence, for all x ∈ H, 〈x, ·〉 on H, extends uniquely to a measurable function

〈x, ·̃〉 on Ω.
Set

FMΩ(α, β) := {finite positive measures µ on (Ω,F) ; (11)

α‖x‖2 ≤
∫
Ω

|〈x, ω〉|2dµ(ω) ≤ β‖x‖2,∀x ∈ H}.

2 Measures Constructed Directly from Frames.

2.1 Markov measures from frames.

The purpose of the below is to make the connection between frames with discrete
index on the one hand, and Markov chains on the other. This in turn allows us
to take advantage of tools from Markov chains, and to make the connection to
continuous Markov processes (see section 4 below.)

Proposition 1 Let H be a Hilbert space, and let {ϕn}n∈N be a frame in H with frame

bounds α, β, 0 < α ≤ β <∞, i.e.,

α‖x‖2 ≤
∑
n∈N
|〈x, ϕn〉|2 ≤ β‖x‖2 (12)

holds for all x ∈ H.

We then get a system of transition probabilities

px,y =
|〈x, y〉|2

c(x)
(13)

with

c(x) :=
∑
n∈N
|〈x, ϕn〉|2, (14)

having the following properties: For x, y ∈ H\{0}, we have:
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(i) Reversible:

c(x)px,y = c(y)py,x

(ii) Markov-rules: px,ϕn ≤ 1 for n ∈ N,∑
n∈N

px,ϕn = 1.

(iii) Normalization:

px,y ≤ ‖y‖2/α

where α is the lower frame bound from (12).

Proof Rule (i) is immediate from the definition in (13). It is also clear from (14)
that px,ϕn ≤ 1, for all n ∈ N. As for (ii), we have:

∑
n

px,ϕn =
∑
n

|〈x, ϕn〉|2

c(x)
=
∑
n

|〈x, ϕn〉|2∑
k |〈x, ϕk〉|2

= 1,

which is the desired property.
The last property (iii) follows from Schwarz and the lower frame bound as

follows:

px,y =
|〈x, y〉|2

c(x)
≤ ‖x‖

2‖y‖2

α‖x‖2 = ‖y‖2/α.

We now give the path space measures Px:

Corollary 1 Every frame {ϕn}n∈N defines a Markov process {Xk}k∈N0
as follows:

Px ({ω : X1(ω) = n1, · · · , Xk(ω) = nk}) = px,ϕn1
pϕn1 ,ϕn2

· · · pϕnk−1
,ϕnk

. (15)

From the proposition, it follows that (14) defines a consistent system of Markov
transitions. Existence of the corresponding Markov process rule follows from Kol-
mogorov’s theorem.

2.2 Determinantal measures from frames.

Starting with a frame F , we arrive at an associated Grammian. Hence for each
finite subset of F , we get a finite Grammian, and its determinant in non-negative,
and it induces an n associated determinantal measure. The relevance of these
measures is discussed below, as well as the continuous-index analogues.

Given a Hilbert space H, dimH = ℵ0. Let {ϕn}n∈N ⊂ H be a system of vectors
in H such that the following a priori estimate holds:

∃β <∞ such that
∑∑

cncm〈ϕn, ϕm〉 ≤ β
∑
n

|cn|2. (16)

Remark 1 The estimate (16) is known to be implied by the upper bound estimate
(1) in Definition 1. When (16) holds, we talk about a Riesz basis sequence. Also,
see [Ly03].
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We shall make use of the following ideas from the setting of determinantal
measures, see e.g., [Buf16]. More generally, a determinantal point process is a
stochastic point process, where the local the probability distributions may be rep-
resented by determinants of suitable kernel functions. In our case, we shall consider
the case where the local determinants are computed from Grammians computed
from overcomplete frame systems (details below). Determinantal processes arise
as important tools in random matrix theory, in combinatorics, and in physics, see
e.g., [GoOl15], [OlGr11].

Proof Suppose the upper bound in (1) holds for some β < ∞, and some system
{ϕn}n∈N ⊂ H. Then set T : H → l2,

Tx = (〈x, ϕn〉n∈N), x ∈ H. (17)

The upper bound in (1) is then equivalent to the following estimate in the ordering
of Hermitian operators

T ∗T ≤ βIH; (18)

and so ‖T ∗T‖ ≤ β. It follows that

‖T‖2 = ‖T ∗‖2 = ‖T ∗T‖ ≤ β,

and therefore ‖T ∗‖ ≤
√
β.

But, c = (cn) ∈ l2(N), then T ∗c =
∑
n cnϕn, and

‖T ∗c‖2H =
∑
n

∑
m

cncm〈ϕn, ϕm〉H ≤ β‖c‖2l2

which is the desired estimate (16).

Then note that

det(〈ϕj , ϕk〉)nj,k=1 ≥ 0 for all n.

Then there is a measure µ = µ(ϕ) defined on a point configurations in N as follows:
Let Φ be a random point configuration in N, then µ = µ(ϕ) is determined to be

µ(Φ ⊃ {1, 2, · · · , n}) = det(〈ϕj , ϕk〉nj,k=1).

This measure is called the associated determinantal measure.

3 A Negative Result.

Theorem 1 Let dimH = ℵ0, and given α > 0, β <∞, then there is no Borel measure

µ on H satisfying

α‖x‖2 ≤
∫
H
|〈x, y〉|2dµ(y) ≤ β‖x‖2, (19)

in other words, FMH(α, β) = ∅. Also, see [GiSk74].
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Proof Indirect. Suppose some finite positive Borel measure µ exists and satisfies
the condition (19) for α, β fixed. Pick an O.N.B. (orthonormal bases) b1, b2, · · · in
H, then ∑

n

|〈x, bn〉|2 = ‖x‖2 by Parseval,

so limn→∞〈x, bn〉 = 0, pointwise for all x ∈ H. Consequently,

〈bn, x〉2 → 0 n→∞

α ≤
∫
H
|〈bn, y〉|2dµ(y) ≤ β.∫

〈bn, ·〉2 → 0 and domination holds.

In summary, the sequence of functions on H, 〈·, bn〉 → 0 as n → ∞ pointwise
convergence, and we have the domination, since∫

|〈·, bn〉|2dµ(·) ≤ β ∀n.

So by the Lebesgue dominated convergence theorem,

lim
n→∞

∫
H
|〈·, bn〉|2dµ(·) = 0

contradicting the lower bound 0 < α ≤
∫
H |〈·, bn〉|

2dµ(·) in (19). Since 0 < α ≤ 0,
we get a contradiction. We have proved that FMH(α, β) = ∅, whenever 0 < α ≤
β <∞.

In [EhOk13], suppose N <∞, H = RN , the authors study µ ∈ FM(α, β)

α‖x‖2 ≤
∫
H
|〈x, y〉|2dµ(y) ≤ β‖x‖2, α > 0, β <∞.

The theorem shows that new techniques are needed when dimH =∞.

4 Gaussian Frame Measures.

Starting with a separable Hilbert space H, we shall need an associated framework
from the construction of Gaussian probability measures. We shall then discuss
how from this we get associated families of probability-frames. Starting with H,
we first show in Lemma 1, that there is a triple of containments (see Definition
3), with H contained in S′ and a Gaussian probability space where the events is
the sigma-algebra of subsets of S′ generated by the cylinder sets. This in turn is
based on an application of Minlos’ theorem, see also section 5 below, and [HiSi08],
[LuZu12], [OkBe08], [TlTa15].

Remark 2 Let H be a Hilbert space, and assume dimH = ℵ0. There exist S, S′

where S is a Fréchet space, S′ is the dual space of S such that S ⊂ H ⊂ S′,
continuous inclusions, and a Gaussian measure µ on S′ such that µ ∈ FMS′(1, 1).
We can take µ to be Gaussian.



10 Palle E. T. Jorgensen, Myung-Sin Song

s is the space of sequences x = (xn) which fall off at infinity faster than any
polynomial in n. A sequence y = (yn) is in s′ if and only if there is a positive M
so that (yn) grows at most like O(nM ). We identify a system of seminorms on s

which turns it into a Fréchet space. The space of continuous linear functionals on
s will then coincide with s′.

Definition 3 The spaces s and s′. Both s and its dual s′ are sequence spaces
x = (xn)n∈N, y = (yn)n∈N; indexed by N or by Z, and we have

x ∈ s ⇐⇒
Def

∀k ∈ N, ∃Ck, such that |n|k|xn| ≤ Ck, ∀n ∈ N.

y ∈ s′ ⇐⇒
Def

∃M ∈ N, ∃C <∞ such that |yn| ≤ C(1 + |n|M ), ∀n ∈ N. (20)

With the seminorms
|x|k = sup

n
|n|k|xn|,

we note that s becomes a Fréchet space, and its dual is s′. We have

s ⊂ l2(N) ⊂ s′. (21)

Lemma 1 If H is a fixed Hilbert space, we pick an O.N.B. {bn}n∈N and set x =∑
n xnbn, xn = 〈x, bn〉H, and via the isomorphism H ←→ l2(N), we get

s ⊂ H ⊂ s′

where

x = (xn) xn = 〈x, bn〉 x ∈ s, y ∈ s′, 〈x,y〉 =
∑
n

xnyn.

Proof Note that if y ∈ S′ satisfies (20) for some M , then

|〈x,y〉| ≤ Const |x|M+2 for all x ∈ s.

Since s is dense in l2(N), the “inclusion” l2(N) ↪→ s′ is indeed 1− 1.

The topology, and the σ−algebra, on s′ is generated by the following subsets
of s′, the cylinder-sets. They are indexed by k ∈ N, open subsets O ⊂ Rk, and
subsets {xi}ki=1 ⊂ S with

Cyl({xi},O) = {ω ∈ s′; (〈xi, ω〉)k1 ∈ O}. (22)

The cylinder-sets form a basis for both a topology on s′ (making it the dual of
S), and of a σ−algebra. We shall use both.

We now verify why we need the space S′ with µ a positive measure defined on
the cylinder Borel σ−algebra of subsets of S′.

Let dimH = ∞ → ℵ0 and (bn) O.N.B. We have s ⊂ H ⊂ s′. We use the
σ−algebra subsets of s′ generated by the cylinder sets.

We shall adopt the following standard terminology from probability theory: By
a probability space we mean a triple (Ω,F , µ) , i.e., sample space, sigma-algebra,
and probability measure. The F-measurable functions f on Ω are the random
variables, The integral of f with respect with µ is called the expectation, and it is
denoted E(f).
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Now, for the Gaussian measures: There exists a measure µ, Gaussian on S′

with Ω = S′, we have

E(f) := E(Ω,F , µ, f) =

∫
Ω

fdµ,

∫
y∈S′

|〈x,y〉|2dµ(y) = ‖x‖2 (23)

or E(|〈x, ·〉|2) = ‖x‖2. See also Lemma 2. More generally, we have the following
theorem:

Given H Hilbert space under inner product 〈·, ·〉. How to extend for H×H to
H× S′:

Step 1. Pick a Gelfand triple
S ⊂ H ⊂ S′. (24)

Step 2. By Minlos, we get a probability space (S′, C Cylinder σ−algebra, µ) where
µ is a probability measure, on C. Here C is the cylinder σ− algebra of
subsets in S′.

Step 3. We get a pairing

〈s, ω〉, ω ∈ S′, s ∈ S such that (25)

Eµ(ei〈s,·〉) = e−
1
2
‖s‖2H (26)

See (29).
Step 4. Let

〈s, ·〉 : S → L2(S′, µ) (27)

be an isometry, and let S be dense in H. Then (27) extends by limit to an
isometry

〈x, ·〉 : H → L2(S′, µ). (28)

By abuse of a notation, we write 〈·, ·〉 also for the H×S′ pairing, but 〈x, ·〉
is only defined almost everywhere on S′ with respect to µ.

Theorem 2 [TlTa15], [OkBe08], [HiSi08] (Minlos’ theorem) There exists a unique

Gaussian measure µ on S′ such that

E(ei〈x,·〉) = e−
1
2
‖x‖2 holds for all x ∈ H. (29)

Where (23) is applied to ω → ei〈x,ω〉 on the LHS in (29). The RHS is called a Gaussian

covariance function.

Consider S ⊂ H ⊂ S′, S is a Fréchet space with a nuclear embedding, and a
Gelfand triple. (See [Jo14], [LuZu12], [JoPe11].)

E(〈x, ·〉2k+1) =

∫
〈x, ·〉2k+1dµ = 0,

E(〈x, ·〉2k) =

∫
〈x, ·〉2kdµ = (2k − 1)!!‖x‖2k,

where (2k − 1)!! = (2k)!
2k·k! = 1 · 3 · 5 · · · (2k − 1), starting with∫

〈x, ·〉dµ = 0.

Note that since µ is Gaussian, it is determined by its first two moments.
We now turn to the Gaussian process associated with a fixed frame:
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Corollary 2 Let {ϕn}n∈N be a fixed frame in H, dimH = ℵ0; see Definition 2. Let

µ denote the Gaussian measure in Theorem 2; and let Tµ : H → L2(S′, µ) be the

canonical isometry Tµx = 〈x, ·̃〉, x ∈ H. Then the Gaussian covariance matrix for the

Gaussian process {Tµϕk}k∈N is (〈ϕk, ϕn〉H), i.e., the Gramian of the frame.

Proof Given a fixed frame {ϕn}n∈N, with frame constants α, β ∈ R+, 0 < α ≤ β <
∞. Set G = (〈ϕj , ϕk〉)N×N, and Gn = (〈ϕj , ϕk〉)nj,k=1, n × n matrix. Let µ be the
Gaussian measure from Theorem 2. Then, for every n ∈ N, the joint distribution
of the system {Tµϕk}nk=1 of Gaussian random variables is

(detGn)−
1
2 e−

1
2

∑n
j=1

∑n
k=1 xjxk(G

−1
n )j,k dx1 · · · dxn

n−dimensional Lebesgue measure
. (30)

Indeed, a direct computation, using (30) shows that, when j, k ∈ {1, 2, · · · , n}, we
get

(detGn)−
1
2

∫
Rn
xjxke

− 1
2
〈x,G−1

n x〉dx1 · · · dxn = 〈Tµϕj , Tµϕk〉L2(µ)

= 〈ϕj , ϕk〉 = Gj,k

which is the desired conclusion.

5 Analysis and Synthesis From Gaussian Frame Measures.

We recall Minlos’ theorem. Construct S ⊂ H ⊂ S′. On the cylinder σ−algebra of
subsets of S′ with µ a probability measure.

A good reference for the present discussion regarding infinite-dimensional Gaus-
sian distributions is [Bo88]. Nonetheless we have included below enough details in
order to make our paper readable for a general audience. This reference addresses in
detail such subtleties as measurability; and the fact that in the infinite-dimensional
case, the measure of H is zero.

Lemma 2 For all x ∈ H, 〈x, ·〉 on H has an extension to S′ (denote also by 〈x, ω〉,
ω ∈ S′ such that ∫

S′
ei〈x,ω〉dµ(ω) = E(eiTµx) = e−

1
2
‖x‖2 . (31)

Also, see [Bo88].

Proof By comparing the two power series, we then get∫
S′
|〈x, ω〉|2dµ(ω) = ‖x‖2 (32)

where (32) or equivalently Tµ is called an Ito-isometry. See [All06], [Kam96].

Corollary 3 The inner product 〈x, ·〉 on H extends to S′ as follows:

Tµx = 〈x, ·̃〉 on S′ (33)

such that Tµ is an isometry, see (32), from H into L2(S′, µ). Also, see [Bo88].
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The Gaussian property µ is part of Minlos’ theorem.
From the corollary we get the adjoint operator,

T ∗µ : L2(S′, µ) −→ H

as a co-isometry.
An important technical point is that the operator mapping x to the measurable

extension of the specified linear functional. We leave to the reader checking that
indeed we get agreement between the following two: (i) the infinite-dimensional
integration with the measurable linear functionals; and (ii) the finite dimensional
inner product from Lemma 3. This consistency issue is important for Corollaries
4 and 5.

Lemma 3 For T ∗µ we have

(T ∗µf) =

∫
S′
f(ω)ωdµ(ω), ∀f ∈ L2(S′, µ), and (34)

RHS in (34) is in H.

Suppose x ∈ H, then Tµx ∈ L2(S′, µ); and if f ∈ L2(µ), then T ∗µf ∈ H. In
summary we have a dual pair of operators:

H
Tµ


T∗µ

L2(S′, µ) (35)

Proof To show that
∫
S′
f(ω)ωdµ(ω) ∈ H, we can use Riesz, and instead prove the

following a priori estimate:

∃ Const <∞, such that

∣∣∣∣∫
S′
f(ω)〈x, ω〉dµ(ω)

∣∣∣∣2 ≤ Const ‖x‖2 ∀x ∈ H. (36)

Then we conclude that
∫
S′
f(ω)ωdµ(ω) ∈ H.

Details:

LHS(36) ≤
Schwarz

∫
S′
|f |2dµ

∫
S′
|〈x, ω〉|2dµ(ω)

= ‖f‖2L2(S′,µ)‖〈x, ·〉‖
2
L2(S′,µ)

=
by (32)

‖f‖2L2(S′,µ)‖x‖
2
H, ∀x ∈ H, C = ‖f‖2L2(S′,µ)

Tµ is called the Ito-isometry. See [All06], [Kam96].
Apply Riesz to the Hilbert space H, and we conclude that the integral below

is a vector in H, i.e., that

T ∗µf =

∫
S′
f(ω)ωdµ(ω) ∈ H.

Corollary 4 For every x ∈ H, we have the following frame decomposition

x =

∫
S′
〈x, ω〉ωdµ(ω). (37)
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Proof We showed that Tµ is isometry (see (36)), and that T ∗µ is given by (34).
Hence

T ∗µTµ = IH, so (38)

x = T ∗µTµx. (39)

We write out the RHS in (39) as
∫
S′
〈x, ω〉ωdµ(ω) = x, since

∫
S′
f(ω)ωdµ(ω) ∈ H if

f ∈ L2(S′, µ).

Corollary 5 Let H, S′ and µ be as above, and let Tµ and T ∗µ be the corresponding

operators in Lemma 2; then TµT
∗
µ is the projection onto the range of Tµ; i.e.,

Qµ = TµT
∗
µ = proj{Tµx;x ∈ H}.

Proof By (38) above, we have

Q2
µ = (TµT

∗
µ)(TµT

∗
µ)

= Tµ(T ∗µTµ)T ∗µ

=
by (38)

TµT
∗
µ = Qµ.

Definition 4 Let x ∈ H, and let µ and µx be Gaussian measures, then∫
S′
ϕdµx =

∫
ϕ(·+ x)dµ(·),

µx(E) = µ(E − x) where E ⊂ S′.

There are several candidates for frame measures in the case of infinite-dimensional
separable Hilbert space H, i.e., H ' l2(N), one is the case of

1. Gaussian measures µ supported in a measure space S′ which is derived from
a Gelfand triple S ⊂ H ⊂ S′ where S is a Fréchet space, S ↪→ H is continuous on
S′ Here S′ is the dual of S. If µ is determined from∫

S′
ei〈x,·〉dµ(·) = e−

1
2
‖x‖2

then ∫
S′
|〈x, y〉|2dµ(y) = ‖x‖2

holds for all x ∈ H. See [Jo14], [LuZu12], [JoPe11].
Given a vector x, then the Radon-Nikodym derivative

dµx

dµ
= e(Tµx)(ω)−

1
2
‖x‖2 , will represent a multiplier for an associated Ito-integral; see also (40) below.

µ(S′) = 1, S ⊂ H ⊂ S′, y −→ 〈x, y〉,∫
S′
x̃dµ = 0∫

S′
|x̃|2dµ = ‖x‖2, x ∈ H.

The key point is that in infinite dimension, the Gaussian measures cannot
be invariant under translation, only quasi-invariant. Hence, for each x, we get a
Radon-Nikodym derivative. And the family of these Radon-Nikodym derivatives
form a cocycle. Readers will be able to find detailed discussion of this in for
example, [Bo88], [GiSk74], [HiSi08], [Jo14], [OkBe08].
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6 Translation.

Now, let H be such that dimH = ℵ0 and S ⊂ H ⊂ S′. Let µ be Gaussian probability
measure in S′, and

Tµ : H −→
isometry

L2(S′, µ),

Tµx = 〈x, ·̃〉 x ∈ H extension from H to S′.

Applications of

Tµ : H → L2(S′, µ).

See above for a discussion of the cocycle of Radon-Nikodym derivatives.

Theorem 3 We can define µx

µx(E) := µ(E − x), x ∈ H, E ⊂ S′ Borel

and the Radon-Nikodym derivative is

dµx

dµ
∈ L1

+(S′, µ)

dµx

dµ
(ω) = e(Tµx)(ω)−

1
2
‖x‖2 , ω ∈ S′. (40)

See, [Bo88].

Theorem 4 Let H and µ be as above, dimH = ℵ0; and let x, y ∈ H. Set

Eµ(x)(·) = e(Tµx)(·)e−
1
2
‖x‖2 on S′, (41)

see (40). Then ∫
S′
Eµ(x)(ω)〈y, ω〉̃

2
dµ(ω) = 〈x, y〉2 + ‖y‖2; (42)

and the following co-cycle property holds:

Eµ(x1)(ω)Eµ(x2)(ω) = e−〈x1,x2〉HEµ(x1 + x2)(ω), for all x1, x2 ∈ H, and ω ∈ S′.
(43)

Proof ∫
S′
Eµ(x)(ω)〈y, ω〉̃

2
dµ(ω) =

∫
S′
〈y, x+ ω〉2dµ(ω)

=

∫
S′

(〈y, x〉2 + 〈y, ω〉̃
2

+ 2〈y, x〉〈y, ω〉̃)dµ(ω)

=
by Theorem 2

〈y, x〉2 +

∫
S′
〈y, ω〉̃

2
dµ(ω)

= 〈y, x〉2 + ‖y‖2

which is the desired conclusion. The co-cycle property (43) is immediate from (41).
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Corollary 6 For each Parseval frames (ϕn) in H, there exists an associated i.i.d.

N(0, 1), system (Zn) on L2(S′, µ) such that

(Tx)(ω) =
∑
n

〈x, ϕn〉Zn(ω), ω ∈ S′.

Proof There exists an isometry V : H → l2(N). If εk(n) = δk,n in l2(N) then
V ∗εk = ϕk, for all k ∈ N. See [Jor08], [JoTi15].

Gaussian Karhunen-Loève Expansion. Suppose {ϕn} is a Parseval frame. We
then have

x =
∑
n

〈x, ϕn〉ϕn

Tx =
∑
n

〈x, ϕn〉Tϕn =
∑
n

〈x, ϕn〉Zn(·).

By Karhunen-Loève expansion, there exists an i.i.d. Zn, N(0, 1) system such that
Tϕn = TV ∗εn = Zn(·). Hence

‖Tx‖2L2(µ) =
∑
n

|〈x, ϕn〉|2 = ‖x‖2

because (ϕn) is a Parseval frame.
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