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Kadison’s Pythagorean Theorem
and essential codimension

Victor Kaftal and Jireh Loreaux

Abstract. Kadison’s Pythagorean theorem (2002) provides a characteri-
zation of the diagonals of projections with a subtle integrality condition.
Arveson (2007), Kaftal, Ng, Zhang (2009), and Argerami (2015) all pro-
vide different proofs of that integrality condition. In this paper we inter-
pret the integrality condition in terms of the essential codimension of a
pair of projections introduced by Brown, Douglas and Fillmore (1973),
or, equivalently of the index of a Fredholm pair of projections intro-
duced by Avron, Seiler, and Simon (1994). The same techniques explain
the integer occurring in the characterization of diagonals of selfadjoint
operators with finite spectrum by Bownik and Jasper (2015).

Mathematics Subject Classification (2010). Primary 47B15, 47A53; Sec-
ondary 46C05, 42C15.

Keywords. Essential codimension, Fredholm pairs of projections, diago-
nals of projections, diagonals of selfadjoint operators.

1. Introduction

In his seminal papers on the Pythagorean Theorem ([17, 18]), Kadison char-
acterizes the diagonals of projections, that is the sequences that can appear
on the diagonal of a matrix representation of a projection. The main assertion
of his Theorem 15 is by now usually paraphrased as follows:

Theorem 1.1 ([18, Theorem 15]). A sequence {dn} with 0 ≤ dn ≤ 1 is the
diagonal of a projection B(H) if and only if for

a =
∑
dn≤1/2

dn and b =
∑
dn>1/2

(1− dn), either

(i) a+ b =∞, or
(ii) a+ b <∞ and a− b ∈ Z.

This work was partially supported by the Simons Foundation grant No 245660 to Victor
Kaftal.
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Kadison proved that a− b is arbitrarily close to an integer and hence is
an integer and referred to that integer as “curious”.

Let us first express a and b in operator theoretic terms. Call p the pro-
jection, {ej} the orthonormal basis of H used for the matrix representation,
and q the projection on span{ej | dj > 1/2}. Then

a = Tr(q⊥pq⊥) and b = Tr(q − qpq), (1.1)

hence if a + b < ∞, we have q⊥(p − q)q⊥ = q⊥pq⊥ ∈ L1, q(p − q)q =
−(q − qpq) ∈ L1 (where L1 denotes the ideal of trace-class operators), and

a− b = Tr
(
q(p− q)q + q⊥(p− q)q⊥

)
. (1.2)

If we knew that p − q ∈ L1, then we would have a − b = Tr(p − q) and
then, by [15, Lemma 4.1], we could conclude that Tr(p − q) ∈ Z. However,
since p− q is not necessarily positive, the fact that its corners are trace-class
does not imply that p− q itself is trace-class. In fact, Argerami proved in [2]
that p − q ∈ L2 (where L2 is the ideal of Hilbert–Schmidt operators) and
by modifying Effros’ argument, he showed that this is sufficient to guarantee
that a − b is an integer. However, neither Kadison’s nor Argerami’s proof
shed much light on the origin of that integer itself.

One of Bill Arveson’s sayings was that if you find an integer in operator
theory you should look for a Fredholm operator. Arveson partially extended
Kadison’s work on the Pythagorean Theorem in [3] where he studied the
diagonals of normal operators with finite spectrum with infinite multiplicity
that forms the vertices of a convex polygon in C, infinite co-infinite projec-
tions being a degenerate special case. He also found an “index obstruction”
for their diagonals which depended on the following result.

Here we use the notation p∧ q to denote the largest projection less than
both p and q, i.e., the projection onto pH ∩ qH. Similarly, p ∨ q denotes the
smallest projection greater than both p and q, i.e., the projection onto the
closure of pH+ qH.

Theorem 1.2 ([3, Theorem 3]). Let p, q be projections in B(H) with p−q ∈ L2.
Then p ∧ q⊥ and p⊥ ∧ q are finite, q(p − q)q and q⊥(p − q)q⊥ belong to L1,
and

Tr
(
q(p− q)q + q⊥(p− q)q⊥

)
= Tr(p ∧ q⊥)− Tr(p⊥ ∧ q) ∈ Z.

Whenever we have two projections, p and q, we denote by q |pH the
operator in B(pH, qH). Then a key step in Arveson’s proof is the fact that if
p− q ∈ L2, then

q |pH is Fredholm and ind(q |pH) = Tr
(
q(p− q)q + q⊥(p− q)q⊥

)
. (1.3)

Although Arveson did not state so explicitly, embedded in his proofs one
can also find the fact that using the notations established above, if a + b <
∞, then indeed p − q ∈ L2 and hence a − b = ind(q |pH), which explains
why a − b is an integer. What remains to be explained is the role of q |pH
and the significance of its index. Note that ind(q |pH) = − ind(p |qH) since
(q |pH)∗ = p |qH.
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A similar question arises from another proof that a − b is an integer
which was obtained in [19, Corollary 3.6]. Let us briefly sketch the original
computation (reformulated in new notation) as it introduces the connections
we want to illustrate.

Let w be an isometry with range p, let Λ := {j | dj > 1/2},

fj :=

{
1√
dj
w∗ej dj 6= 0

e1 dj = 0

f :=
∑
j∈Λ

ej ⊗ fj where (ej ⊗ fj)x := 〈x, fj〉 ej

f = v|f | the polar decomposition of f

ta :=
∑
j 6∈Λ

djfj ⊗ fj

tb :=
∑
j∈Λ

(1− dj)fj ⊗ fj

Then ‖fj‖ = 1 for all j, ta, tb ∈ L1
+, and 1 =

∑
j djfj ⊗ fj , hence

ta − tb = 1− f∗f = v∗v(ta − tb) + 1− v∗v
E(q − vv∗) = −E(v(ta − tb)v∗),

where E denotes the conditional expectation on the algebra of diagonal oper-
ators with respect to the orthonormal basis {ej}, namely E(x) is the diagonal
of an operator x ∈ B(H). Hence

a− b = Tr(ta − tb) = −Tr(q − vv∗) + Tr(1− v∗v) ∈ Z.

It is then immediate to see (but was not remarked explicitly in [19]),
that

a− b = − ind(v∗ |qH).

Notice that f can be interpreted as the analysis operator of the Bessel se-
quence {fj}j∈Λ and v as the analysis of the canonical Parseval frame. While
this construction provides indeed a proof that v∗ |qH is Fredholm, a natural
question is why ind(v∗ |qH) = ind(p |qH) as can be obtained from Arveson’s
work. To answer it, notice first that since f∗f is a trace-class perturbation of
the identity, it is Fredholm and hence so are |f | and f∗ = |f |v∗. Furthermore
ind(f∗ | qH) = ind(v∗ | qH) since ind(|f |) = 0. Next

w∗q =
∑
j∈Λ

w∗ej ⊗ ej =
∑
j∈Λ

√
djfj ⊗ ej = fd

where d :=
∑
j∈Λ

√
djej ⊗ ej ≥ 1√

2
q is invertible in B(qH). Thus w∗ |qH is

also Fredholm in B(qH,H) and

a− b = − ind(w∗ |qH). (1.4)

It is then immediate to verify (see also (2.3) below) that ind(w∗ |qH) =
ind(p |qH) as obtained by Arveson.
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However, neither the proof due to Arveson nor the one in [19]) provides
a natural explanation of the role of w∗ |qH or p |qH .

The goal of our paper is to provide an explanation of that role in the
context of the notion of essential codimension [p : q] of a pair of projections
p and q with p − q ∈ K that was introduced in the BDF theory (see [8]
and Section 2), or of the more general notion of index of a Fredholm pair of
projections, introduced by Avron, Seiler, and Simon in [4].

Combining Arveson’s work with the study of Fredholm pairs and essen-
tial codimension, one can provide a natural identification of Kadison’s integer
with the essential codimension of a pair of projections. In the notations of
Theorem 1.1 we have:

Theorem 1.3. Let p ∈ B(H) be a projection such that a+ b <∞ and let q be
the projection on span{ej | dj > 1/2}. Then p− q ∈ L2 and a− b = [p : q].

To understand the simple proof of this result, and for the convenience
of the readers not familiar with the notions of Fredholm pairs, essential codi-
mension, and the work of Arveson in [3], we will provide in Section 2 a
self-contained short presentation of the relevant results of the theory of Fred-
holm pairs. We have strengthened several results and generalized them to the
case when p− q belongs to an arbitrary (two-sided) operator ideal J rather
than just the Hilbert–Schmidt ideal L2.

Since Fredholm pairs have found most of their applications in the theory
of spectral flows in type I or type II von Neumann algebras, we will conclude
Section 2 with a very brief foray into the case when the notion of Fredholm
operators and indices are taken relative to a semifinite von Neumann algebra
(also called Breuer–Fredholm, or more precisely τ -Breuer–Fredholm opera-
tors).

In Section 3 we will assemble the results previously collected into a proof
of Theorem 1.3 that is inspired by, but independent of, the work by Arveson.
Then we will extend part of Proposition 2.8 to positive contractions. We will
then use the same techniques to identify an integer appearing in the study
by Bownik and Jasper of the diagonals of selfadjoint operators with finite
spectrum and also to simplify the proof of one of the key results of that
paper (see [6]).

We thank R. Douglas for having suggested to the first named author
of this paper to consider a possible connection between the frame approach
originally used and essential codimension.

2. Essential codimension and Fredholm pairs

In this paper H denotes a separable infinite dimensional complex Hilbert
space and K the C*-algebra of compact operators on H.

The notion of essential codimension of two projections was first intro-
duced in ([8, Remark 4.9]).
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Definition 2.1 ([8]). Given projections p, q ∈ B(H) for which p − q ∈ K(H),
the essential codimension [p : q] of p and q is defined by:

[p : q] :=


Tr(p)− Tr(q) Tr(p) <∞,Tr(q) <∞

ind(v∗w)
Tr(p) = Tr(q) =∞,
w, v isometries, ww∗ = p, vv∗ = q.

This definition depends on the fact that (v∗w)∗(v∗w) = 1 +w∗(q− p)w
and similarly for w∗v. Thus setting π to be the projection onto the Calkin
algebra, we see that π(v∗w) is unitary and hence v∗w is Fredholm. Also, if w̃
and ṽ are another pair of isometries with ranges p and q respectively, then

ind(v∗w) = ind(v∗ṽṽ∗w̃w̃∗w) = ind(ṽ∗w̃)

since w∗w̃ and v∗ṽ are unitaries. This shows that [p : q] does not depend on
the choice of the isometries w and v.

Some properties of the essential codimension were presented without
proof in [7] and a complete exposition can be found in [9], together with an
interesting application to liftability of projections in the corona algebra of,
among others, C([0, 1])⊗K.

Independently, and without reference to essential codimension, Avron,
Seiler, and Simon defined in [4] the more general notion of Fredholm pairs of
projections.

Definition 2.2 ([4]). A pair of projections (p, q) in B(H) is said to be Fredholm
if q |pH is a Fredholm operator as an element of B(pH, qH). The index of the
pair is defined to be ind(q |pH).

Notice that if v ∈ B(H4,H3) and w ∈ B(H1,H2) are unitaries, then

g ∈ B(H2,H3) is Fredholm ⇔ v∗gw ∈ B(H1,H4) is Fredholm. (2.1)

and then

ind(v∗gw) = ind g. (2.2)

Thus if w and v are isometries with ranges p and q respectively, then

q |pH∈ B(pH, qH) is Fredholm ⇔ v∗w = v∗ |pH w ∈ B(H) is Fredholm

⇔ v∗ |pH∈ B(pH,H) is Fredholm (2.3)

Recall that v∗w is Fredholm if and only if π(v∗w) is invertible. We
have seen above that if p − q ∈ K, then π(v∗w) is unitary and hence v∗w is
Fredholm, that is (p, q) is a Fredholm pair and by (2.2), [p : q] = ind(q |pH).
For consistency we will henceforth write [p : q] := ind(q |pH) whenever (p, q)
is a Fredholm pair even when p− q 6∈ K.

Soon after [4], W. Amrein, K. Sinha [1] realized that the proofs in [4]
could be considerably simplified by reducing to the case of projections in
generic position. This notion was first introduced by Dixmier [14] (he called
them in “position p”) and independently by Krein, Kranosleskii and Milman
[22], and further studied by Davis [13], Halmos[16] (he called them “generic
pairs”), and others.
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Definition 2.3. Two projections p, q ∈ B(H) are said to be in generic position
if

p ∧ q = p ∧ q⊥ = p⊥ ∧ q = p⊥ ∧ q⊥ = 0.

When just the first three projections are zero, the pair p, q is in generic
position in B((p∨ q)H) and when there is no risk of confusion we will simply
call them in generic position. For the readers’ convenience we will collect
here some results on projections in generic position. Good references can be
found in the texts of Strătilă [23, §17.15], Takesaki [24, pp. 306-308] and in
the article of Amrein and Sinha [1].

Theorem 2.4. Let p, q ∈ B(H) be two projections.

(i) Then the projections p0 := p−p∧ q−p∧ q⊥ and q0 := q−p∧ q−p⊥ ∧ q
are in generic position (in the Hilbert space (p0 ∨ q0)H.)

Suppose p, q are in generic position and let N := {p, q}′′ be the von Neumann
algebra generated by them. Then

(ii) Nq(= (qNq |qH) is masa of N and N can be identified with M2(Nq).
(iii) There are positive injective contractions c and s in Nq with c2 + s2 = 1

(the identity operator of Nq) such that p and q can be identified with

q =

(
1 0
0 0

)
and p =

(
c2 cs
cs s2

)
. (2.4)

(iv) c = (qpq)1/2 |qH, s = (qp⊥q)1/2 |qH, and ‖s‖ = ‖p− q‖.

In this section we will often use the representation (2.4) without further
reference. Notice that for projections in generic position, the equality ‖s‖ =
‖p − q‖ ([23, 17.15 (8)], see also [14, pg 391] and [24, pg 308]) follows also
from the identity:

p− q =

(
−s2 cs
cs s2

)
=

(
−s c
c s

)(
s 0
0 s

)
=

(
s 0
0 s

)(
−s c
c s

)
(2.5)

Notice also that if we set v := 1√
2

(
(1− s)1/2 (1 + s)1/2

(1 + s)1/2 −(1− s)1/2

)
, then v = v∗ is

unitary and

p− q = v

(
s 0
0 −s

)
v∗. (2.6)

It is well known that projections in generic position are unitarily equiv-
alent in N , and over the years various authors (e.g., [4, 9, 14, 21]) have
constructed different unitaries in N implementing the equivalence. We will
use the following unitary:

p = uqu∗ for the unitary u :=

(
c −s
s c

)
. (2.7)

As shown by Amrein and Sinha in [1], reduction to generic position
makes the analysis of Fredholm pairs simpler and more transparent. For the
convenience of the readers, we will provide here a short self-contained presen-
tation of the main results on Fredholm pairs that we will need in the sequel,
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completing and generalizing results obtained in [1, 3, 4, 9]. The starting point
is the analysis of the case when the projections are in generic position. Recall
that Fredholm operators are characterized by being invertible modulo the
compact operators.

Lemma 2.5. Let p, q be projections in generic position. Then the following
are equivalent.

(i) p |qH is a Fredholm operator
(ii) c is invertible
(iii) p |qH is invertible
(iv) ‖p− q‖ < 1
(v) ‖p− q‖ess < 1.

If these conditions are satisfied, then ind(p |qH) = 0.

Proof. (i) ⇒ (ii). Since |p |qH | = c is injective, and since p |qH has closed
range, by the Inverse Mapping Theorem p |qH is invertible and hence so is c.

(ii) ⇒ (iii). Immediate since p |qH=

(
c2

cs

)
and (1, c−1s) =

(
c2

cs

)−1

.

(iii) ⇒ (i). Obvious.
(ii) ⇔ (iv). Immediate since ‖p− q‖ = ‖s‖ < 1 and c is invertible iff c2 ≥ δ1
for some δ > 0 iff s2 ≤ (1− δ)1 for some δ > 0.
(iv) ⇔ (v). By (2.6), ‖p − q‖ess = ‖s‖ and since s is positive and injective
this implies that ‖p− q‖ = ‖s‖ < 1. The other direction is trivial. �

The equivalence of (i) and (iv) and the fact that then the index is zero
were obtained in [1, Proposition 4]. Using this lemma it is now easy to obtain
a characterization of Fredholm pairs also when the projections are not in
generic position.

Proposition 2.6. Let p, q be projections in B(H). Then (p, q) is a Fredholm
pair if and only if ‖p− q‖ess < 1 and then p ∧ q⊥ and p⊥ ∧ q are finite and

[p : q] = Tr(p ∧ q⊥)− Tr(p⊥ ∧ q).

Proof. In the notations of Theorem 2.4 and (2.5) and (2.6) we have

p = (p ∧ q + p ∧ q⊥)⊕ p0 and q = (p ∧ q + p⊥ ∧ q)⊕ q0

and hence

p− q = (p ∧ q⊥ − p⊥ ∧ q)⊕ (p0 − q0). (2.8)

As in [1, Theorem 2], it is easy to see that (p, q) is a Fredholm pair if
and only if both

(
p∧q+p∧q⊥, p∧q+p⊥∧q

)
and (p0, q0) are Fredholm pairs,

and then the index of (p, q) is the sum of the indices of the other two pairs. It
is obvious that the first pair is Fredholm if and only if both p∧ q⊥ and p⊥∧ q
are finite and then its index is Tr(p ∧ q⊥) − Tr(p⊥ ∧ q). By Lemma 2.5, the
pair (p0, q0) is Fredholm if and only if ‖p0 − q0‖ess < 1 and then its index is
zero. Thus to conclude the proof one just notices that p − q is a finite rank
perturbation of p0 − q0 and hence it has the same essential norm. �
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The implication that if (p, q) is a Fredholm pair then p∧q⊥ and p⊥∧q are
finite and the formula for the index of the pair was obtained in [1, Theorem
2]. The necessity and sufficiency of the condition ‖p − q‖ess < 1 (albeit
not expressed in terms of essential norm) was only implicit in [4], and was
obtained explicitly and with more generality in [5].

We consider now the cases when the difference p − q belongs to some
proper operator ideal J .

Proposition 2.7. Let J be an operator ideal and p, q ∈ B(H) be projections.
Then

(i) p− q ∈ J if and only if p⊥ ∧ q and p ∧ q⊥ are finite and s ∈ J (where

p0 := p− p ∧ q − p ∧ q⊥ =

(
c2 cs
cs s2

)
as by (2.4)).

(ii) If p− q ∈ J , then [p : q] = 0 if and only if there is a unitary u ∈ 1 + J
such that uqu∗ = p.

Proof. (i). By (2.8) we see that p−q ∈ J if and only if p∧q⊥ ∈ J , p⊥∧q ∈ J
and p0 − q0 ∈ J . By (2.6), the last condition holds if and only if s ∈ J , and
the conclusion then follows from the fact that a projection belongs to a proper
ideal if and only if it is finite.

(ii). First notice that from part (i) and Proposition 2.6 it follows that

p−q ∈ J and [p : q] = 0 ⇔ Tr(p∧q⊥) = Tr(p⊥∧q) <∞ and s ∈ J . (2.9)

Therefore if there is a unitary in 1 + J such that uqu∗ = p , then it is
immediate to see that p− q ∈ J and [p : q] = 0.

Conversely, assume that p − q ∈ J and [p : q] = 0. Then by (2.9)
s ∈ J , p⊥ ∧ q + p ∧ q⊥ is finite, and Tr(p ∧ q⊥) = Tr(p⊥ ∧ q) and hence
p∧ q⊥ ∼ p⊥ ∧ q. Then there is a unitary u1 on

(
p∧ q⊥ + p⊥ ∧ q)H such that

u1(p⊥ ∧ q)u∗1 = p ∧ q⊥.

Let u2 :=

(
c −s
s c

)
. Then by (2.7), u2 is a unitary on (p0 ∨ q0)H) and

p0 = u2q0u
∗
2. Furthermore,

u2 − 1 |(p0∨q0)H=

(
c− 1 −s
s c− 1

)
∈ J

because

c− 1 = −s2
(
c+ 1

)−1 ∈ J 2 ⊂ J .

Let u3 be the identity on
(
p∧ q⊥+p⊥∧ q+p0∨ q0

)⊥
. Then u := u1⊕u2⊕u3

is unitary and uqu∗ = p. Since u1 has finite rank, we may conclude that
u− 1 ∈ J . �

Property (ii) in the above proposition was obtained for J = K in [9,
Theorem 2.7].

Using Proposition 2.7 (i) we obtain an independent proof of the first
part of Theorem 1.2 which extends it to arbitrary proper operator ideals,
and establishes the sufficiency of the conditions listed.
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Proposition 2.8. Let J be a proper ideal of B(H) and let p, q be projections
in B(H). Then the following are equivalent:

(i) p− q ∈ J
(ii) q(p− q)q ∈ J 2 and q⊥(p− q)q⊥ ∈ J 2

(iii) The projections p∧q⊥ and p⊥∧q are finite and at least one the conditions
q(p− q)q ∈ J 2 and q⊥(p− q)q⊥ ∈ J 2 holds.

Furthermore if p− q ∈ L2, then

[p : q] = Tr(q(p− q)q + q⊥(p− q)q⊥).

Proof. From (2.8) we see that

q(p−q)q = −p⊥∧q⊕
(
−s2 0

0 0

)
and q⊥(p−q)q⊥ = p∧q⊥⊕

(
0 0
0 s2

)
. (2.10)

Thus q(p− q)q ∈ J 2 (resp., q⊥(p− q)q⊥ ∈ J 2) if and only if p⊥ ∧ q is finite
and s ∈ J (resp., p∧ q⊥ is finite and s ∈ J ). By Proposition 2.7 (i) it is now
obvious that the conditions (i)-(iii) are equivalent.

Assume now that p− q ∈ L2, then by the implication (i) ⇒ (ii) we see
that q(p− q)q ∈ L1 and q⊥(p− q)q⊥ ∈ L1. Then by (2.10)

Tr(q(p− q)q + q⊥(p− q)q⊥) = Tr(p ∧ q⊥)− Tr(p⊥ ∧ q)
because

Tr

(
s2 0
0 0

)
= Tr

(
0 0
0 s2

)
<∞

as s2 ∈ L1. The conclusion then follows from Proposition 2.6. �

The equivalence of just (i) and (ii) follows immediately from the identity

(p− q)2 = −q(p− q)q + q⊥(p− q)q⊥

whence

((p− q)+)2 = q⊥(p− q)q⊥ and ((p− q)−)2− = −q(p− q)q. (2.11)

To conclude this survey, we observe that every Fredholm operator can
be associated in a natural way to a Fredholm pair of projections (p, q) so that
the index of the operator equals the index of the pair. To this end, consider
any Fredholm operator x : H → K and scale x to have norm 1. After choosing
an arbitrary infinite, co-infinite projection q and identifying K with qH, we
have the following proposition.

Proposition 2.9. Suppose x : H → qH is a contraction with q an infinite, co-
infinite projection. Then x can be completed to an isometry w : H → H (i.e.,
x = qw), and for any such completion, if x is Fredholm then (p := ww∗, q) is
a Fredholm pair with [p : q] = indx.

Proof. Consider the defect operator (1 − x∗x)1/2 and a partial isometry v
taking R1−x∗x to vv∗ ≤ q⊥. Then define w = x+ v(1− x∗x)1/2. Since v∗x =
0 = x∗v, a simple computation shows w∗w = 1, which establishes that x can
be completed to an isometry.
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Now suppose w is any such completion, and hence x = qw. Define
p := ww∗ and notice x = qpw = (q |pH)w when the operators are viewed
on the appropriate spaces. Then from (2.1) and (2.2), if x is Fredholm, so is
q |pH and

indx = ind(q |pH) = [p : q]. �

Remark 2.10. We note that any completion of a contraction x : H → qH
to an isometry arises in the manner above. Indeed, suppose w′ is such a
completion. Set y := w′ − x and note that qy = 0 since x = qw′. Thus

y∗y = (w′)∗w′ − (w′)∗x− x∗w′ + x∗x

= 1− 2(w′)∗qw′ + x∗x = 1− x∗x.

In particular, y = v′(1 − x∗x)1/2 for some partial isometry v′ with (v′)∗v′ =
R1−x∗x and v′(v′)∗ = Ry ≤ q⊥. Moreover, u = q+v(v′)∗ is a partial isometry
for which w = uw′.

Another perspective of Proposition 2.9 is that p is a dilation of xx∗ to
H for which indx = [p : q]. Indeed, p := ww∗ is a dilation of xx∗ because if
y = w − x, then with respect to the decomposition q + q⊥ = 1

ww∗ =

(
xx∗ xy∗

yx∗ yy∗

)
.

2.1. Breuer Fredholm

As mentioned in the introduction, the essential codimension/relative index
of projections has found its main application in the study of spectral flows in
Fredholm modules. However, in many cases of interest the Fredholm modules
are with respect to a semifinite von Neumann algebra (see [5, 10, 11, 12]).
The following short summary may be of interest to the reader.

Let M be a semifinite von Neumann algebra with separable predual
(but not necessarily a factor), τ a faithful semifinite normal trace, and let
Jτ (M) the ideal of τ -compact operators

Jτ (M) := span{x ∈M(A⊗K)+ | τ(x) <∞} (norm closure).

Let π : M → M/Jτ (M) be the canonical quotient map and let ‖x‖ess :=
‖π(x)‖ be the essential norm. Then and element x ∈ M is called τ -Breuer
Fredholm (also called just τ -Fredholm) if π(x) is invertible. A necessary and
sufficient condition is that τ(Nx) < ∞ (where Nx is the projection on the
kernel of x) and that there exists a projection e ∈ M with τ(e) < ∞ such
that (1− e)H ⊂ xH. Then the index is defined as

ind(x) = τ(Nx)− τ(Nx∗) ∈ R
and satisfies the expected properties of an index, but of course it is no longer
integer valued.

The original definition by Breuer was given in terms of the ideal J (M)
of compact operators on M which received considerable attention over the
years,

J (M) := span{x ∈M(A⊗K)+ | Rx is finite} (norm closure).
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When M is a factor and hence has a unique trace (up to normalization), the
notions of τ -Breuer–Fredholm and Breuer–Fredholm coincides, but for global
algebras they do not and so their theory had to be partially re-derived in [5].

With these definitions almost all of the results listed here for B(H) hold
with the same statements and mostly with the same proofs. So we will briefly
list here only the properties that fail or that require a different proof.

Proposition 2.6 holds with the same statements and a natural modi-
fication of the proof of [4, Proposition 3.1] in the case that M is a factor,
but required more work for the general case [5, Lemma 4.1] less the trace
condition which is only relevant when M is a factor.

It is still true that if p, q ∈ M are in generic position and form a Fred-
holm pair then [p : q] = 0, but contrary to Lemma 2.5, we can have ‖p−q‖ = 1
and g and c are only invertible modulo Jτ (M) as the following example shows.

Example. Let M be a type II∞ factor. Let q ∼ q⊥ ∼ 1 be a projection in
M which we decompose into a sum

∑∞
1 qn = q of mutually orthogonal finite

projections such that τ
(∑∞

1 q2n

)
<∞. Let

c :=

∞∑
1

(

√
1

2n
q2n +

∞∑
0

√
1− 1

2n+ 1
q2n+1

s :=

∞∑
1

√
1− 1

2n
q2n +

∞∑
0

√
1

2n+ 1
q2n+1

q =

(
1 0
0 0

)
and p =

(
c2 cs
cs s2

)
.

Then q and p are in generic position and ‖p− q‖ = ‖s‖ = 1 while s ∈ J (M),
hence p− q ∈ J (M), and (p, q) is a Fredholm pair with respect to M .

Proposition 2.7 (ii) holds without any changes if M is a factor, but does
not hold for global algebras. Consider for instance M := B(H1) ⊕ B(H2)
and τ := Tr⊕Tr. Let q, p be rank one projections in B(H1) and B(H2)
respectively. Then q and p are not equivalent (with respect to M) and hence a
fortiori they are not unitarily equivalent. On the other hand p− q ∈ J (M) =
K(H1) ⊕ K(H2), hence p, q is a Fredholm pair and furthermore [p : q] =
Tr(p)− Tr(q) = 0.

3. The Kadison theorem and some applications

We begin by using the tools developed in Section §2 to identify the integer
a− b in Kadison’s theorem, that is, to prove Theorem 1.3.

Proof. By (1.2)

a− b = Tr
(
qpq − q + q⊥pq⊥

)
= Tr

(
q(p− q)q + q⊥(p− q)q⊥

)
and by (1.1), q(p− q)q ∈ L1 and q⊥(p− q)q⊥ ∈ L1. Thus by Proposition 2.8,
p− q ∈ L2 and [p : q] = Tr(q(p− q)q + q⊥(p− q)q⊥). �
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As a first consequence of Kadison’s theorem and of the work in Section
§2, we observe that if the diagonal of a projection p clusters sufficiently fast
around 0 and 1 (that is, if a + b < ∞, or, equivalently, if p − q ∈ L2), then
one can “read” from the diagonal the essential codimension [p : q]. But what
if a+ b =∞?

If a =∞ and b <∞, from q⊥(p− q)q⊥ ∈ L1 we can deduce that p∧ q⊥
is finite and s ∈ L2, and hence from q(p − q)q 6∈ L1 it follows that p⊥ ∧ q is
infinite. Similarly, if a <∞ and b =∞ then p ∧ q⊥ is infinite. In either case
(p, q) is not a Fredholm pair and in particular, p− q 6∈ K.

Less trivial is the case when a = b = ∞ and p − q ∈ K \ L2, as we
see from the following proposition. We first need to introduce some notation.
Next, given two sequences ξ and η of non-negative numbers converging to 0,
with ξ∗ and η∗ their monotone non-increasing rearrangements, we say that ξ
is majorized by η (ξ ≺ η) if

∑n
j=1 ξ

∗
j ≤

∑n
j=1 η

∗
j for all n.

Proposition 3.1. Suppose p, q are projections with p− q ∈ K \L2. Then there
exists a projection p′ such that p′ − q ∈ K, [p′ : q] 6= [p : q] and there is an
orthonormal basis {en} that diagonalizes q such that E(p) = E(p′).

Proof. By Proposition 2.7 (i), p − q ∈ K implies that p ∧ q⊥ and p⊥ ∧ q are
both finite. Thus p0 − q0 = (p − q) + (p ∧ q⊥ − p⊥ ∧ q) ∈ K \ L2. It suffices
to prove the proposition for projections in generic position because then we
simply set p′ := p∧q+p∧q⊥+p′0 for the general case. So to simplify notation,
assume henceforth that p, q are in generic position and have the form as in
(2.4). In particular, q ∼ q⊥ ∼ 1 and by Lemma 2.5, [p : q] = 0.

Next, choose a rank one projection r′ ≤ q⊥ and let r := q⊥ − r′. After
identifying B(H) ' B(qH ⊕ rH ⊕ C) with M2(qB(H)q) ⊕ C via a partial
isometry taking qH → rH, consider the projection

p̃ :=

c2 cs 0
cs s2 0
0 0 1

 .

Note that p̃− (0⊕ 0⊕ 1) and q are in generic position relative to their join,
and hence their essential codimension is zero. This implies that [p̃, q] = 1 6=
0 = [p, q].

Now, choose an orthonormal basis {en} that diagonalizes q, E its cor-
responding conditional expectation, and let ξ be the diagonal sequence of s2.
Then under natural notations we have

E(p) = Eq(p)⊕ Eq⊥(p)

and furthermore, Eq(p) = Eq(p̃) = Eq(c
2) and Eq⊥(p) = Eq(s

2) = diag ξ.

Since p − q ∈ K \ L2, by Proposition 2.7 we have that s2 ∈ K \ L1,
that is ξ → 0 but ξ 6∈ `1. By the Schur–Horn theorem for compact operators
[20, Proposition 6.4] ξ is majorized by the eigenvalues sequence λ(s2) of the
operator s2 and hence,

ξ ≺ λ(s2) ≺ λ
(
s2 0
0 1

)
.
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Now

(
s2 0
0 1

)
is a positive compact operator with zero kernel belonging to

B(q⊥H). Hence by [20, Proposition 6.6] there is a unitary u ∈ B(q⊥H) such
that

diag ξ = Eq⊥H
(
u

(
s2 0
0 1

)
u∗
)
.

Let u′ := 1 |qH ⊕u and p′ := u′(p̃)u′∗. Then

E(p′) = Eq(c
2)⊕ diag ξ = E(p).

Since u′qu′∗ = q we have

[p′ : q] = [up̃u∗ : uqu∗] = [p̃ : q] 6= [p, q]. �

As a second application of Theorem 1.3 and of the techniques used to
prove it, we will consider a recent work by Bownik and Jasper [6]. Based
on Kadison’s characterization of diagonals of projections, Bownik and Jasper
characterized the diagonals of selfadjoint operators with finite spectrum and
in a key part of their analysis they too encountered an index obstruction
similar to the one in Theorem 1.1 (ii). Following their notations, if z ∈ B(H)
is a selfadjoint operator with finite spectrum we let σ(z) = {aj}n+r

j=−m and

pj = χ{aj}(z) be the spectral projection corresponding to the eigenvalue aj ,
so that

z =

n+r∑
j=−m

ajpj .

For ease of notations perform if necessary a transformation so to have

Tr(pj) <∞ for j < 0 and j > n+ 1, a0 = 0, and an+1 = 1.

Let {en} be an orthonormal basis, {dn} be the diagonal of z with respect to
that basis and let as in Theorem 1.1,

a =
∑
dn≤1/2

dn and b =
∑
dn>1/2

(1− dn),

Then their Theorem 4.1, which is a key component of the necessity part
of their characterization, states that

Theorem 3.2 ([6, Theorem 4.1]). If a+ b <∞ then

(i) Tr(pj) <∞ for 0 < j < n+ 1;
(ii) a− b−

∑
j 6=n+1 aj Tr(pj) ∈ Z.

Here of course we use the convention that 0 ·∞ = 0 and so a0 Tr(p0) = 0
whether Tr(p0) is finite or not.

We will present an independent proof of this result and at the same
time identify the integer in (ii) proving that if we set q as in Theorem 1.1 to
be the projection on span{ej | dj > 1/2}, then

a− b−
∑
j 6=n+1

aj Tr(pj) = [pn+1 : q]. (3.1)
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First we need an extension to positive elements of the equivalence of (i)
and (ii) in Proposition 2.8.

Lemma 3.3. Let J be a proper ideal, x ∈ B(H)+ a positive contraction, and
q ∈ B(H) a projection.

(i) If q − qxq ∈ J and q⊥xq⊥ ∈ J , then x − q ∈ J 1/2 and xχ[0,ε](x) ∈ J
for every 0 < ε < 1.

(ii) Assume that x is a projection or that J is idempotent (i.e., J = J 2).
If x− q ∈ J 1/2 and xχ[0,ε](x) ∈ J for some 0 < ε < 1, then q− qxq ∈ J
and q⊥xq⊥ ∈ J .

Proof. (i). Since q⊥xqxq⊥ ≤ q⊥x2q⊥ ≤ q⊥xq⊥ ∈ J , it follows that qxq⊥ and
q⊥xq belong to J 1/2. But then

x− q = (qxq − q) + q⊥xq⊥ + qxq⊥ + q⊥xq ∈ J 1/2.

Let ε > 0 and let xε := xχ[0,ε](x). Then 0 ≤ q⊥xεq
⊥ ≤ q⊥xq⊥ ∈ J , whence

q⊥xεq
⊥ ∈ J . Furthermore,

1− x ≥ (1− x)χ[0,ε](x) ≥ (1− ε)χ[0,ε](x) ≥ (1− ε)xε
and hence q − qxq ≥ (1− ε)qxεq. Thus qxεq ∈ J and since

0 ≤ xε ≤ 2
(
qxεq + q⊥xεq

⊥) ∈ J

it follows that xε ∈ J .
(ii). The case when x is a projection is given by (2.11). Assume then that

J is idempotent. Then x− q ∈ J 1/2 = J implies q − qxq = −q(x− q)q ∈ J .
Furthermore, (x− q)2 = x2−xq− qx+ q hence q⊥x2q⊥ = q⊥(x− q)2q⊥ ∈ J .
Then

q⊥(x− xε)q⊥ ≤
1

ε
q⊥(x− xε)2q⊥ ≤ 1

ε
q⊥x2q⊥ ∈ J

and hence

q⊥xq⊥ = q⊥(x− xε)q⊥ + q⊥xεq
⊥ ∈ J . �

Notice that if J is not idempotent and k ∈ J 1/2
+ \ J is a positive

contraction, then x := 1−k and q := 1 satisfy both hypotheses of Lemma 3.3
(ii) but k = q − qxq 6∈ J .

Now we can proceed with the proof of Theorem 3.2 and (3.1).

Proof. Set x =
∑n+1
j=1 ajpj . Then 0 ≤ x ≤ 1 and

z − x =

−1∑
j=−m

ajpj +

n+r∑
j=n+2

ajpj has finite rank.

As in (1.2) we have that

a = Tr(q⊥xq⊥) + Tr(q⊥(z − x)q⊥) = Tr(q⊥zq⊥)

and

b = Tr(q − qxq)− Tr(q(z − x)q) = Tr(q − qzq),
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hence q(z − q)q ∈ L1 , q⊥(z − q)q⊥ ∈ L1, and

a− b = Tr
(
q(z − q)q + q⊥(z − q)q⊥

)
. (3.2)

We also have q(x−q)q ∈ L1 and q⊥(x−q)q⊥ ∈ L1, hence by Lemma 3.3,
it follows that x− q ∈ L2 and

n∑
j=1

ajpj = xχ[0,an](x) ∈ L1.

But then x−pn+1 =
∑n
j=1 ajpj has finite rank and in particular, Tr(pj) <∞

for 0 < j < n+ 1, thus proving (i). As a consequence,

pn+1 − q = pn+1 − x+ x− q ∈ L2

and hence by Proposition 2.8,

[pn+1 : q] = Tr
(
q(pn+1 − q)q + q⊥(pn+1 − q)q⊥

)
. (3.3)

Furthermore, y := z − pn+1 =
∑
j 6=n+1 ajpj has finite rank and in particular

is in L1, so that ∑
j 6=n+1

aj Tr(pj) = Tr(y) = Tr(qyq + q⊥yq⊥). (3.4)

Finally from (3.2) and (3.3),

a− b = Tr
(
q(pn+1 − q)q + q⊥(pn+1 − q)q⊥ + qyq + q⊥yq⊥

)
= [pn+1 : q] + Tr(y).

Thus by (3.4), a− b−
∑
j 6=n+1 aj Tr(pj) = [pn+1 : q] ∈ Z. �
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