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Zeons, Orthozeons, and Graph Colorings

G. Stacey Staples∗, Tiffany Stellhorn

Abstract

Nilpotent adjacency matrix methods have proven useful for counting
self-avoiding walks (paths, trails, cycles, and circuits) in finite graphs.
In the current work, these methods are extended for the first time to
problems related to graph colorings. Nilpotent-algebraic formulations of
graph coloring problems include necessary and sufficient conditions for k-
colorability, enumeration (counting) of heterogeneous and homogeneous
paths, trails, cycles, and circuits in colored graphs, and a matrix-based
greedy coloring algorithm. Introduced here also are the orthozeons and
their application to counting monochromatic self-avoiding walks in colored
graphs. The algebraic formalism easily lends itself to symbolic computa-
tions, and Mathematica-computed examples are presented throughout.

Keywords: zeons, orthozeons, heterochromatic, monochromatic, paths,
cycles, trails, circuits

1 Introduction

Nilpotent adjacency matrix methods were first developed by Staples for count-
ing self-avoiding walks (paths, cycles, trails, & circuits) in finite graphs [28].
Weighting the vertices of a graph with zeon generators allows one to construct
a nilpotent adjacency matrix, A, whose entries are generators of the algebra.
The matrix is very convenient for performing symbolic computations and al-
lows enumeration of cycles by considering traces of matrix powers. This idea
has led to a number of applications to graph enumeration problems and even
routing problems in communication networks [3, 8, 16, 24].

Zeon algebras can be thought of as commutative analogues of fermion alge-
bras, which are isomorphic to Clifford algebras of appropriate signature. In the
Clifford algebra context, properties of spinors have been applied to the study of
maximal cliques [5] and an assortment of other graph-theoretic problems [14].
Although Clifford algebras provide the underlying framework for everything ap-
pearing here, the broader Clifford algebra formalism is unnecessary for matters
at hand.

∗Department of Mathematics & Statistics, Southern Illinois University Edwardsville, Ed-
wardsville, IL 62026-1653,USA, Email: sstaple@siue.edu
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Combinatorial properties of zeons have been shown to generate Stirling
numbers of the second kind, Bell numbers, Catalan numbers, and Bessel num-
bers [22]. Further, they have been useful in defining partition-dependent stochas-
tic integrals. In fact, expanding powers of zeon elements is equivalent to sum-
ming over partitions [23].

Recently, combinatorial identities involving zeons have been studied in a
number of works by A.F. Neto [17, 18, 19, 20]. In these works, Bernoulli num-
bers, m-Stirling numbers of the second kind, higher order derivatives of trigono-
metric functions, and representations of Bernoulli polynomials are presented in
the context of zeon algebras.

This paper is the first extension of nilpotent adjacency matrix methods to
graph colorings. Algebraic formulations of k-colorability are presented for both
vertex- and edge-colored graphs. Powers of nilpotent coloring matrices are used
to count heterochromatic paths and cycles in vertex-colored graphs (trails and
circuits in edge-colored graphs). Further, by considering the semigroup of or-
thogonal rank-one projections, the approach is extended to count monochro-
matic self-avoiding walks in colored graphs.

Monochromatic paths and cycles have been objects of interest for decades,
and a detailed survey of results would be impractical. Notable works include
the papers of Erdös and Tuza [10, 11], Albert, Frieze and Reed [1, 12], and
Broersma, et al. [4].

In 1973, Raynaud proved a conjecture by Lehel that a 2-colored complete
symmetric directed graph with at least two vertices contains a simple directed
(monochromatic) Hamiltonian cycle. In a 1983 paper, Gyáfás surveyed results
covering the vertices of 2-colored complete graphs by two paths or two cycles of
different color [13]. In [15], Li, Zhang, and Broersma established some sufficient
conditions for the existence of monochromatic and heterochromatic paths and
cycles.

In [6], Chen and Li assume that the color degree 1 of a graph’s vertices is
bounded below by some integer k, and show that if 3 ≤ k ≤ 7, then G has a
heterochromatic path of length at least k − 1. They also show that if k > 8,
then G has a heterochromatic path of length at least d 3k

5 e+ 1.
More recently, Babu, Chandran, and Rajendraprasad [2] established lower

bounds for the length of a maximum heterochromatic path in an edge colored
graph without small cycles.

Beyond the utility of nilpotent adjacency matrix methods in graph enumera-
tion problems [28] and routing problems in networks and multi-constrained path
problems [3, 8, 16], the extension of these methods to graph colorings allows
one to count heterochromatic and monochromatic self-avoiding walks in colored
graphs. Moreover, the zeon-algebraic formalism allows one to quickly verify
whether a given graph coloring is proper, and provides a convenient framework
for implementing greedy coloring algorithms.

The rest of the paper is laid out as follows. Essential definitions and terminol-

1The color degree of a vertex is the cardinality of the distinct colors among the vertex’s
neighbors.
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ogy related to the zeon algebra, denoted C`nnil appear in Subsection 1.1. After
reviewing essential terminology and notation from graph theory in Subsection
1.2, results involving verification of proper colorings and counting heterochro-
matic self-avoiding walks are discussed in Section 2. A matrix formulation of a
greedy vertex-coloring algorithm is presented in Section 3.

Orthozeons are introduced in Section 4, where they are defined and used
to construct orthozeon vertex- and edge-coloring matrices associated with finite
graphs. These matrices are then applied to the counting of monochromatic
self-avoiding walks in finite graphs.

Graph polynomials having zeon and orthozeon coefficients are defined in
Section 5. Properties of these polynomials reveal information about the hete-
rochromatic (or monochromatic) circumference of a colored graph and the size
of a maximal heterochromatic (or monochromatic) matching.

Illustrative Mathematica examples are presented throughout the paper. The
interested reader can find examples and necessary code through the Research
link at http://www.siue.edu/~sstaple. The paper concludes in Section 6
with a discussion of avenues for further research.

1.1 Zeon Preliminaries

Let C`nnil denote the real abelian algebra generated by the collection {ζi : 1 ≤
i ≤ n} along with the scalar 1 = ζ0 subject to the following multiplication rules:

ζi ζj = ζj ζi for i 6= j, and

ζi
2 = 0 for 1 ≤ i ≤ n.

It is evident that a general element α ∈ C`nnil has canonical expansion of the

form α =
∑
I∈2[n]

αI ζI . Here, I ∈ 2[n] is a subset of [n] = {1, 2, . . . , n}, used as

a multi-index, αI ∈ R, and ζI =
∏
ι∈I

ζι. The algebra C`nnil is called the (n-

particle) zeon algebra, and the generators {ζi : 1 ≤ i ≤ n} are referred to simply
as zeons.

As a vector space, this 2n-dimensional algebra has a canonical basis of basis
blades of the form {ζI : I ⊆ [n]}. The null-square property of the generators
{ζi : 1 ≤ i ≤ n} guarantees that the product of two basis blades satisfies the
following:

ζIζJ =

{
ζI∪J I ∩ J = ∅,
0 otherwise.

An inner product is defined on C`nnil by linear extension of〈 ∑
I∈2[n]

uIζI , ζJ

〉
= uJ .
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Hence, u ∈ C`nnil implies u =
∑
I∈2[n]

〈u, ζI〉 ζI . Finally, the sum of the scalar

coefficients in the canonical expansion of u is called the scalar sum of u and is

denoted by 〈〈u〉〉. In particular, when u =
∑
I∈2[n]

uIζI , the scalar sum is given

by 〈〈u〉〉 =
∑
I∈2[n]

uI .

1.2 Graph Theory Background

The terminology appearing here is more-or-less standard, and can be found in
any number of graph theory texts. The reader is referred to [29] for graph theory
beyond the essential notation and terminology found here.

A graph G = (V,E) is a collection of vertices V and a set E of unordered
pairs of vertices called edges. A directed graph is a graph whose edges are ordered
pairs of vertices.

Two vertices vi, vj ∈ V are said to be adjacent if there exists an edge e =
(vi, vj) ∈ E. In this case, the edge e is said to be incident to vertices vi and vj .
The number of edges incident to a vertex is called the degree of the vertex. Two
edges are said to be coincident if they are incident to a common vertex.

A graph is finite if V and E are finite sets, that is, if |V | and |E| are finite
numbers. A loop in a graph is an edge of the form (v, v). A graph is said to be
simple if it is undirected, contains no loops, and no unordered pair of vertices
appears more than once in E.

A k-walk {v0, . . . , vk} in a graph G is a sequence of vertices in G with initial
vertex v0 and terminal vertex vk such that there exists an edge (vj , vj+1) ∈ E
for each 0 ≤ j ≤ k − 1. A k-walk contains k edges. A k-path is a k-walk in
which no vertex appears more than once. A k-trail is a k-walk in which no
edge appears more than once. A closed k-walk is a k-walk whose initial vertex
is also its terminal vertex. A k-cycle is a closed k-path (with the exception
v0 = vk), while a k-circuit is a closed k-trail. For purposes of the current work,
self-avoiding walks include trails, paths, circuits and cycles, as determined by
context.

Given a graph G = (V,E) on n vertices, the adjacency matrix A = (aij) of
G is defined by

aij =

{
1 if (vi, vj) ∈ E,
0 otherwise.

Definition 1.1. A (vertex) coloring of a graph G = (V,E) is a mapping φ :
V → {1, . . . , κ}. The set {1, . . . , κ} is referred to as the palette of the coloring,
and its elements are referred to as colors. A coloring φ is said to be proper if
(vi, vj) ∈ E implies φ(vi) 6= φ(vj).

In light of Definition 1.1, a colored graph is a pair (G,φ), where φ is a
coloring of the graph G. For purposes of the current paper, a surjective mapping
φ : V → {1, . . . , κ} will be referred to as a vertex κ-coloring.
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Definition 1.1 extends naturally to edge colorings. A proper edge coloring is
a mapping θ : E → {1, . . . , κ} such that (vi, v`), (v`, vj) ∈ E implies θ((vi, v`)) 6=
θ((v`, vj)). In other words, no pair of coincident edges can be associated with
the same color in a proper edge coloring.

A κ-coloring that is proper will be referred to specifically as a proper κ-
coloring. A graph G will be said to be properly κ-colorable if there exists a
proper coloring of G having a palette of cardinality κ. The minimal κ for which
a proper κ-coloring exists is called the chromatic number of G.

2 Proper Colorings and Heterochromatic Walks

The motivation behind the application of zeon algebras to graph colorings is
the nilpotent adjacency matrix approach to counting self-avoiding walks, as
developed in [28]. To briefly review, let G = (V,E) be a graph on n vertices
(either simple or directed with no multiple edges), and let {ζi : 1 ≤ i ≤ n} denote
the nilpotent generators of C`nnil. The nilpotent adjacency matrix associated
with G is defined by

〈vi|A|vj〉 =

{
ζj if (vi, vj) ∈ E
0 otherwise.

When A is the nilpotent adjacency matrix of an n-vertex graph G, it is not
difficult to show (by induction) that for positive integer m,

〈〈tr(Am)〉〉 = mXm,

where Xm denotes the number of m-cycles appearing in the graph G. By consid-
ering off-diagonal entries of Am one can also determine the number of m-paths
between a given initial-terminal pair of vertices. Furthermore, the approach
extends naturally to counting trails and circuits by a simple modification to the
construction of A.

With this motivation in mind, the task now is to define a number of nilpotent
matrices associated with vertex- and edge-colorings of a finite graph. Properties
of these matrices will be used to quickly determine whether or not a given graph
coloring is proper and to count the heterochromatic self-avoiding walks (i.e.,
paths, cycles, trails, & circuits) in a finite graph.

Definition 2.1. Let G = (V,E) be a graph on n vertices with vertex κ-coloring
φ. The zeon vertex-coloring matrix Ψ associated with (G,φ) is the n×n matrix
having entries in C`κnil defined by

〈vi|Ψ|vj〉 =

{
ζφ(vj) if(vi, vj) ∈ E
0 otherwise.

5



Theorem 2.2. Let Ψ be the zeon vertex-coloring matrix of a colored graph
(G,φ) on n vertices. Then, for 1 ≤ i, j ≤ n and k ∈ N,

〈vi|Ψk|vj〉 =
∑
|I|=k

αIζI

where αI is the number of walks from vi → vj in the graph such that the vertex
colors are indexed by I and no color is repeated with the possible exception of
φ(vi); in particular, no vertex can be repeated, except the initial vertex can
repeated at most once in an intermediate step.

Proof. Proof is by using induction on k ≥ 1. When k = 1, the result holds by
definition of Ψ. Let a good walk vi → v` on I be a walk from vi to v` such that
no vertex color is repeated except possibly φ(vi) one time. Now, assume the
result holds for some k ≥ 1.

〈vi|Ψk+1|vj〉 = 〈vi|ΨkΨ|vj〉

=

n∑
l=1

〈vi|Ψk|v`〉〈v`|Ψ|vj〉

=

n∑
l=1

∑
|I|=k

]{k good walks vi → v` on I}ζI〈v`|Ψ|vj〉.

For fixed `, 〈vi|Ψk|v`〉 is a linear combination of ζI ’s representing good k-walks
from vi to v`, the product of an arbitrary term from this linear combination
with 〈v`|Ψ|vj〉 will be zero if there is no edge from v` to vj or if vj is the
same color as another vertex in the good k-walk vi → v`. Hence, the prod-
uct 〈vi|Ψk|v`〉〈v`|Ψ|vj〉 represents a sum of good (k + 1)-walks vi → vj of the
following form:∑

|I|=k

]{good k-walks vi → v` on I}]{1-walks v` → vj}ζIζφ(vj) =

∑
|I|=k+1

]{good (k + 1)-walks vi → vj on I visiting v` in step k}ζI∪φ(vj).

So, summing over all ` represents the colors along a path, as long as no colors
are repeated and vi can be visited only once after starting the path.

Counting heterochromatic cycles is accomplished by the following corollary.

Corollary 2.3. Let Ψ be the zeon vertex-coloring matrix of a colored graph
(G,φ) on n vertices. Let k ∈ N be arbitrary and let hk denote the number of
heterochromatic k-cycles in (G,φ). Then, 〈〈tr(Ψk)〉〉 = khk.

Proof. The result follows from Theorem 2.2 by making two observations. First,
the last vertex visited in a cycle is the initial vertex, so any walk revisiting the
initial vertex in an intermediate step will be annihilated by closing the walk.
Secondly, each k-cycle appears along the main diagonal with multiplicity k due
to various choices of basepoint for the cycle.

6



Theorem 2.2 also reveals an algebraic method for determining whether a
coloring is proper.

Corollary 2.4. A zeon vertex-coloring matrix Ψ represents a proper coloring
of a graph G = (V,E) if and only if〈〈

tr(Ψ2)
〉〉

= 2|E|.

Proof. By Theorem 2.2, 〈vi|Ψ2|vi〉 is a linear combination of products of zeon
pairs representing heterochromatic 2-cycles based at vi. Each 2-cycle appears
twice in the trace by choice of basepoint. It follows immediately that the scalar
sum

〈〈
tr Ψ2

〉〉
is twice the number of heterochromatic pairs of adjacent vertices

in the graph. By definition, the graph is properly colored if and only if every
adjacent pair of vertices is heterochromatic.

Corollary 2.4 can be restated to provide the following nilpotent adjacency
matrix formulation of k-colorability of a graph.

Theorem 2.5 (Proper κ-colorability). A graph G = (V,E) is properly κ-
colorable if and only if there exists a nilpotent coloring matrix Ψ having entries
in C`κnil such that 〈〈

tr(Ψ2)
〉〉

= 2|E|.

Example 2.6. Vertices of the graph seen in Figure 1 were colored with 8
randomly-assigned colors. The trace of ψ2 as computed by Mathematica is

6ζ{1,2} + 8ζ{1,3} + 2ζ{1,5} + 2ζ{1,6} + 2ζ{1,7} + 4ζ{1,8} + 2ζ{2,3}

+4ζ{2,4} + 2ζ{2,5} + 4ζ{2,6} + 4ζ{2,7} + 2ζ{2,8} + 6ζ{3,4} + 4ζ{3,5}

+2ζ{3,7} + 6ζ{3,8} + 2ζ{4,5} + 2ζ{4,6} + 2ζ{4,7} + 4ζ{4,8} + 2ζ{5,6}

+4ζ{5,7} + 2ζ{5,8} + 4ζ{6,8} + 8ζ{7,8}.

The scalar sum of the trace is 90, while the graph contains 54 edges. Hence,
the coloring represented by ψ is not a proper coloring.

The previous theorems and corollaries can now be extended from vertex
colorings to edge colorings.

Definition 2.7. Let G = (V,E) be a graph (either simple or directed with
no multiple edges) on n vertices with edge κ-coloring θ. Define the zeon edge-
coloring matrix Λ associated with (G, θ) to be the n× n matrix having entries
in C`κnil given by

〈vi|Λ|vj〉 =

{
ζθ(vi,vj) (vi, vj) ∈ E
0 otherwise.

Theorem 2.8. Let Λ be the zeon edge-coloring matrix of a simple graph of G
on n vertices. Then, for 1 ≤ i, j ≤ n and m ∈ N,

〈vi|Λm|vj〉 =
∑
|I|=m

αIζI
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ζ{1}

ζ{2}

ζ{3}ζ{1}

ζ{6}

ζ{4}

ζ{3}

ζ{1}

ζ{5}

ζ{3}

ζ{8} ζ{3}

ζ{4}

ζ{1}

ζ{8}

ζ{5}

ζ{7}ζ{2}

ζ{5}

ζ{8}

ζ{7}

ζ{6}

ζ{1}

ζ{7}

ζ{3}

ζ{8}

ζ{7}

ζ{4}
ζ{8}

ζ{2}

ζ{4}
ζ{6}

Figure 1: A vertex-colored graph on 32 vertices.

where αI is the number of trails from vi → vj in the graph such that the edge
colors are indexed by I and no color is repeated. In particular, αI is the number
of heterochromatic trails from vi → vj on colors indexed by I.

Proof. Proof is by using induction on m ≥ 1. When m = 1, the result holds by
definition of Λ. Assume the result holds for some m ≥ 1.

〈vi|Λm+1|vj〉 = 〈vi|ΛmΛ|vj〉

=

n∑
l=1

〈vi|Λm|v`〉〈v`|Λ|vj〉

=

n∑
l=1

∑
|I|=m

]{good m-trails vi → v` on I}ζI〈v`|Λ|vj〉.

For fixed `, 〈vi|Λm|v`〉 is a linear combination of ζI ’s representing good (i.e.,
heterochromatic) m-trails from vi to v`. The product of any term from this
linear combination with 〈v`|Λ|vj〉 will be zero if there is no edge from v` to vj
or if the edge (v`, vj) is the same color as another edge in the m-trail vi → v`.
Hence, the product 〈vi|Λk|v`〉〈v`|Λ|vj〉 represents a sum of (m+1)-trails vi → vj
of the following form:∑

|I|=m

]{m-trails vi → v` on colors indexed by I}ζIζθ(v`,vj) =

∑
|I|=m+1

]{(m+ 1)-trails vi → vj on colors I; last step (v`, vj) }ζI∪θ(v`,vj).
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Summing over all ` gives a representation of all heterochromatic (m+ 1)-trails
vi → vj in G.

Corollary 2.9. Let Λ be a zeon edge-coloring matrix of a graph G. For any
m ∈ N,

〈〈tr(Λm)〉〉 = mρ,

where ρ is the number of heterochromatic m-circuits in G.

Proof. From Theorem 2.8, element 〈vi|Λm|vi〉 is a linear combination of hete-
rochromatic m-circuits based at vi. Each m-circuit appears with multiplicity m
along the main diagonal due to the possible choices of basepoint. Hence, the
result.

ζ{1}

ζ{2}
ζ{3}

ζ{4}

ζ{5}
ζ{6}

ζ{7} ζ{1}

ζ{8}

ζ{9}

ζ{10} ζ{9}

ζ{2} ζ{8}

ζ{7}
ζ{4}

ζ{11}

ζ{1}

ζ{5}

Figure 2: A zeon 11-edge-colored graph on 12 vertices.

In order to formulate a way to determine proper colorings, there needs to
be a checking of all coincident pairs of edges to be sure no two coincident edges
are the same color.

Lemma 2.10. The total number of pairs of coincident edges in a graph G is
given by ∑

v∈V

(
deg(v)

2

)
.

Proof. First, note that if deg(v) ≤ 1 for some v ∈ V , there is no pair of edges

coincident with v. By definition,
(

deg(v)
2

)
= 0 in this case. Otherwise,

(
deg(v)

2

)
represents the number of pairs of edges coincident with v. Summing over all
vertices thus gives the result.

Recalling that entries of Λ2 represent heterochromatic 2-trails and 2-circuits
in G, off-diagonal elements correspond to heterochromatic pairs of coincident
edges. For convenience, set β = (1, 1, . . . , 1) ∈ Rn for appropriate dimension n,
determined henceforth by context.
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Theorem 2.11. The zeon edge-coloring matrix Λ represents a proper edge col-
oring of a graph G = (V,E) if and only if

〈〈
βΛ2β†

〉〉
= 2

∑
v∈V

(
deg(v)

2

)
.

Proof. By Theorem 2.8, 〈vi|Λ2|vj〉 is a linear combination of ζIs representing
the sum of all heterochromatic 2-trails vi → vj . It is clear that heterochromatic
2-circuits cannot exist in any edge-colored graph, so the diagonal entries of Λ2

are all zero. Summing coefficients of all off-diagonal entries is accomplished by
computing

〈〈
βΛ2β†

〉〉
, which counts the number of heterochromatic pairs of

coincident vertices in G. By definition, G is properly edge-colored if and only if
every pair of coincident vertices is heterochromatic. Hence, the result.

3 Greedy Coloring

As illustrated by Theorems 2.4 and 2.11, the zeon coloring matrices allow one
to quickly determine whether or not a given coloring is proper. The task at
hand now is to develop a matrix-based greedy coloring algorithm that can be
conveniently implemented in Mathematica to generate a proper coloring.

The matrix-based algorithm developed here works from right to left across
columns of the adjacency matrix, so the vertex ordering is inferred from the
construction of the adjacency matrix. To represent a proper vertex coloring, the
zeon generators appearing in columns associated with adjacent vertices must be
distinct. To this end, Algorithm 1 operates as follows.

The algorithm accepts as input the usual adjacency matrix A = (a1| · · · |an)
and constructs a nilpotent coloring matrix Ψ = (ψ1| · · · |ψn). After assigning
Ψ← A as an initialization 2, the algorithm proceeds from left to right.

Considering the jth column ψj , let M denote the indices of all zeon gen-
erators appearing in ψj . Observing that the graph is properly n-colorable, it
follows immediately that setting χ = min{[n] \M} makes ζχ the least-indexed
generator available to color vertex vj . This coloring is accomplished by setting
ψj = ζχaj . To make this color unavailable to the remaining uncolored vertices,
the algorithm sets ψji = ψij for j < i ≤ n. This is repeated as j runs from 1 to
n. At the end, the matrix Ψ represents a proper κ-coloring of G, where κ ≤ n
is the maximum index appearing among zeon generators in Ψ.

Example 3.1. A randomly-generated graph on n = 36 vertices and |E| = 237
edges is seen in Figure 3. This 9-coloring was generated using Algorithm 1. The

2Ψ can be initialized as any n× n matrix. The assignment Ψ← A is expedient.
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input : Adjacency matrix A = (a1| · · · |an) of a simple graph G on n
vertices.

output: Proper zeon vertex-coloring matrix Ψ = (ψ1| · · · |ψn) associated
with graph G.

Initialize matrix Ψ.;
Ψ← A;

Begin with first vertex (i.e., first column of Ψ).;
j ← 1;

while j ≤ n do

Get indices of any ζ’s appearing in current column of Ψ.;
M ← {Indices of generators in ψj};
Choose minimum available color index.;
χ← min([n] \M);

Set jth column of Ψ to represent color.;
ψj ← ζχaj ;

Make this color unavailable to neighbors yet to be evaluated.;
for i← j + 1 to n do

ψji ← ψij ;
end
j ← j + 1;

end
return Ψ;

Algorithm 1: Proper Zeon Vertex Coloring Matrix of a Graph

coloring is proper, as verified by 〈〈tr(Ψ2)〉〉 = 474 = 2|E|. In particular,

tr(Ψ2) = 46ζ{1,2} + 24ζ{1,3} + 16ζ{1,4} + 8ζ{1,5} + 26ζ{1,6} + 10ζ{1,7}

+8ζ{1,8} + 8ζ{1,9} + 42ζ{2,3} + 24ζ{2,4} + 22ζ{2,5} + 32ζ{2,6}

+12ζ{2,7} + 8ζ{2,8} + 2ζ{2,9} + 20ζ{3,4} + 14ζ{3,5} + 22ζ{3,6}

+10ζ{3,7} + 12ζ{3,8} + 6ζ{3,9} + 10ζ{4,5} + 18ζ{4,6} + 6ζ{4,7}

+8ζ{4,8} + 6ζ{4,9} + 12ζ{5,6} + 6ζ{5,7} + 4ζ{5,8} + 4ζ{5,9}

+8ζ{6,7} + 6ζ{6,8} + 2ζ{6,9} + 6ζ{7,8} + 2ζ{7,9} + 4ζ{8,9}.

4 Orthozeons and Monochromatic Walks

While zeons lend themselves nicely to counting heterochromatic self-avoiding
walks, some new algebraic tools are required for the monochromatic case.

Given a κ-dimensional vector space V equipped with inner product 〈·, ·〉 :
V → R, it is not difficult to see that for any unit column vector u ∈ V , the
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Figure 3: Greedy 9-coloring of a graph on 36 vertices.

outer product uu† is an order-κ matrix that acts on V as orthogonal projection
onto span(u) via matrix multiplication.

Denoting such a rank-one projection by τu, it is also not difficult to see that
the product τuτv is the zero matrix when 〈u,v〉 = 0. Being a projection, τu
is obviously idempotent. Hence, the rank-one projections associated with any
orthonormal basis {ui : 1 ≤ i ≤ κ} for V generate a commutative κ-dimensional
algebra satisfying

τuiτuj =

{
0 when i 6= j,

τui when i = j.

For notational convenience, the generators will be denoted by {τi : 1 ≤ i ≤
κ}. The algebra generated by these projections will be denoted Pκ, and it is
isomorphic to the algebra of diagonal matrices with real coefficients.

The goal of the current section is to develop methods for counting monochro-
matic self-avoiding walks in finite graphs. To that end, nilpotent coloring matri-
ces will be defined having entries in the tensor algebra Pκ⊗C`nnil. Generators of
this algebra will be referred to as orthozeons. For notational covenience, define
j

ζX = τj ⊗ ζX , for 1 ≤ j ≤ κ and X ⊆ 2[n]. Orthozeons thereby satisfy the
following multiplication rules:

i

ζX
j

ζY =
j

ζY
i

ζX =


i

ζX∪Y (i = j) ∧ (X ∩ Y = ∅),
0 (i 6= j) ∨ (X ∩ Y 6= ∅).

(4.1)

Multiplication in the algebra is defined by associative linear extension of the

12



action (4.1) defined on generators. The dimension of the algebra is readily seen
to be κ2n.

Constructing an adjacency matrix with orthozeon generators now allows one
to count monochromatic self-avoiding walks in colored graphs.

Definition 4.1. Let G = (V,E) be a simple graph on n vertices with vertex
coloring φ : V → {1, . . . , κ}. The orthozeon vertex-coloring matrix Φ associated
with G is the n× n matrix whose entries are generators of Pκ ⊗ C`nnil defined
for 1 ≤ i, j ≤ n by

〈vi|Φ|vj〉 =


φ(j)

ζ {j} if (vi, vj) ∈ E,
0 otherwise.

Theorem 4.2. Let Φ be the orthozeon vertex-coloring matrix of a graph of G
on n vertices. Then, for 1 ≤ i, j ≤ n and m ∈ N,

〈vi|Φm|vj〉 =

κ∑
`=1

∑
|I|=m

α`,I
`

ζI

where α`,I is the number of m-walks from vi → vj in the graph on vertices
indexed by I, each of color `, such that no vertex is repeated, with the pos-

sible exception of vi exactly once. In particular, the coefficient of
`

ζI∪{i} in
`

ζ{i}〈vi|Φm|vj〉 is the number of monochromatic m-paths of color ` from vi to vj
on vertices indexed by I.

Proof. Proof is by induction on m, using the inherent properties of the algebra
Pκ ⊗ C`nnil. The structure is similar to the proof of Theorem 2.2.

Example 4.3. Figure 4 depicts an orthozeon 5-coloring of a graph on 30 ver-
tices. Letting Φ denote an orthozeon coloring matrix of the graph, one finds

tr(Φ5) = 10
3

ζ{2,3,19,26,27} + 10
3

ζ{2,4,19,26,27} + 10
5

ζ{1,5,15,16,22} + 10
5

ζ{1,5,15,16,28}

+10
5

ζ{1,5,15,22,28} + 10
5

ζ{1,5,16,22,28}.

Observing that 〈〈tr(Φ5)〉〉 = 60, one concludes that G contains 12 monochro-
matic 5-cycles. Four of the 5-cycles are on vertices of color 3, and eight are on
vertices of color 5. Their respective vertex sets are seen in the subscripts.

Definition 4.4. Let G be a simple (possibly directed) graph with edge κ-
coloring θ. Define the orthozeon edge-coloring matrix Υ of (G, θ) having entries
in Pκ ⊗ C`nnil by

〈vi|Υ|vj〉 =


θ(i,j)

ζ {vi,vj} if (vi, vj) ∈ E,
0 otherwise.

13
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Figure 4: An orthozeon 5-colored 30-vertex graph.

Theorem 4.5. Let Υ be the orthozeon edge-coloring matrix of (G, θ), where θ
is an edge κ-coloring of G. Then, for 1 ≤ i, j ≤ n and m ∈ N,

〈vi|Υm|vj〉 =

κ∑
`=1

∑
|I|=m

α`,I
`

ζI ,

where α`,I denotes the number of monochromatic m-trails vi → vj on edges of
color ` indexed by I.

Proof. Proof is by induction on m, using the inherent properties of the algebra
Pκ ⊗ C`[E]

nil. The structure is similar to the proof of Theorem 2.8.

5 Zeon & Orthozeon Coloring Polynomials

Traditional graph-theoretic polynomials include chromatic, cycle, and Tutte
polynomials. In [14], Harris and Staples define various spinor polynomials as-
sociated with finite graphs. The spinor polynomials are polynomials in one
real variable, t, having spinor-valued coefficients. Depending on the construc-
tion, the polynomials reveal the sizes of maximal cliques, independent sets, and
matchings. Spinor polynomials can also reveal a graph’s girth or circumference.

In the current work, the notion of spinor polynomials is extended to recover
information about heterochromatic or monochromatic structures in graphs. By
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introducing polynomials having zeon or orthozeon coefficients, details of a graph’s
hetero- or monochromatic cliques, independent sets, matchings, girth, or circum-
ference can be revealed.

Definition 5.1. The heterochromatic circumference of a colored graph G is the
size of a maximal heterochromatic cycle inG. The monochromatic circumference
of a colored graph G is the size of a maximal monochromatic cycle in G.

Dual to the notion of circumference is the notion of girth. Hence, the fol-
lowing definition.

Definition 5.2. The heterochromatic girth of a colored graph G is the size of
a minimal heterochromatic cycle in G. The monochromatic girth of a colored
graph G is the size of a minimal monochromatic cycle in G.

Two other (dual) structures of interest are independent sets and matchings
in graphs. In a graph G = (V,E) a vertex subset U ⊆ V is said to be an
independent set if no pair of vertices in U is adjacent in the graph; i.e., u, v ∈ U
implies (u, v) /∈ E and (v, u) /∈ E. These definitions extend in the obvious way
to define heterochromatic or monochromatic independent sets.

Definition 5.3. A heterochromatic independent set of a graph G = (V,E) with
vertex coloring φ is a subset of distinctly-colored vertices of G that are pairwise
non-adjacent. More specifically, U ⊆ V is a heterochromatic independent set
of G if u, v ∈ U implies φ(u) 6= φ(v), (u, v) /∈ E, and (v, u) /∈ E. Similarly, a
monochromatic independent set of a graph G = (V,E) with vertex coloring φ is
a single-colored subset of vertices of G that are pairwise non-adjacent. In other
words, U ⊆ V is a heterochromatic independent set of G if u, v ∈ U implies
φ(u) = φ(v), (u, v) /∈ E, and (v, u) /∈ E.

Dual to the notion of an independent set, a matching of G is a subset F ⊆ E
such that no pair of edges in F is coincident in G. This definition extends
naturally to heterochromatic or monochromatic matchings.

Definition 5.4. A heterochromatic matching of a graph G = (V,E) with
edge coloring θ is a subset of distinctly-colored edges of G that are pairwise
non-coincident. Equivalently, F ⊆ E is a heterochromatic matching of G if
(a, b), (c, d) ∈ F implies θ((a, b)) 6= θ((c, d)), and that the sets {a, b} and {c, d}
are disjoint. A monochromatic matching of a graph G = (V,E) with edge col-
oring θ is a single-colored subset of edges of G that are pairwise non-coincident.
That is, F ⊆ E is a heterochromatic matching of G if (a, b), (c, d) ∈ F implies
θ((a, b)) = θ((c, d)), and that the sets {a, b} and {c, d} are disjoint.

With these concepts in hand, it is now possible to define polynomials that
reveal more information about structures contained in colored graphs.

Proposition 5.5. Let Ψ be a zeon vertex-coloring matrix of G, and define the
zeon coloring polynomial of G, z(t), by

z(t) = tr
(
etΨ
)
.
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Then, the coefficient of tk in z(t) is of the form

〈z(t), tk〉 =
∑
|I|=k

kαIζI ,

where αI is the number of heterochromatic k-cycles in G on colors indexed by
I. In particular, the graph is acyclic if z(t) = 0; otherwise, degt(z(t)) is the
heterochromatic circumference of G.

Proof. Given the nilpotent structure of Ψ as a matrix having generators of
C`κnil as entries, it is clear that the matrix exponential can be written as a

finite sum. Further, by linearity of trace, z(t) =

κ∑
`=0

t`

`!
tr(Ψ`). The result now

follows immediately from Corollary 2.3.

The following corollary is immediate.

Corollary 5.6. Let Ψ be a zeon vertex-coloring matrix of G on n vertices, and
let z(t) be the zeon coloring polynomial of G, as defined in Proposition 5.5. If
z(t) 6= 0, then the heterochromatic girth of G is given by n− degt(t

nz(1/t)) .

Defining polynomials with orthozeon coefficients allow consideration of a
graph’s monochromatic subgraphs.

Proposition 5.7. Let Φ be an orthozeon vertex-coloring matrix of G, and define
the orthozeon coloring polynomial of G, µ(t), by

µ(t) = tr
(
etΦ
)
.

Then degt(µ(t)) is the monochromatic circumference of G.

Proof. As a polynomial in t, the degree of tr
(
etΦ
)

is the maximum exponent
k for which Φk is nonzero. By Theorem 4.2, k is the length of a maximal
monochromatic cycle of (G,φ).

The next corollary is immediate.

Corollary 5.8. Let Φ be an orthozeon vertex-coloring matrix of G on n ver-
tices, and let µ(t) be the orthozeon coloring polynomial of G, as defined in
Proposition 5.7. If µ(t) 6= 0, then the monochromatic girth of G is given by
n− degt(t

nµ(1/t)) .

These results extend naturally to edge-colored graphs in order to reveal
details of heterochromatic and monochromatic matchings.

Proposition 5.9. Let G = (V,E) be a simple graph on n vertices with edge-

coloring φ : E → {n+ 1, . . . , n+ κ}. Setting Γ =
∑

(vi,vj)∈E⊂V×V

ζ{vi,vj ,φ(vi,vj)},

the exponential etΓ is a polynomial in t with coefficients in C`n+κ
nil. Further-

more degt(e
tΓ) is the size of a maximal heterochromatic matching in G.
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Proof. The key here is that the product ζ{vi,vj ,φ(vi,vj)}ζ{v`,vm,φ(v`,vm)} is only
nonzero if {vi, vj , v`, vm, φ(vi, vj), φ(v`, vm} is a pairwise-disjoint set. Given that
Γ is clearly nilpotent, the exponential is a finite sum (i.e., a polynomial in t),
and the degree of t is the maximal number of factors ζ{vi,vj ,φ(vi,vj)} appearing in
any nonzero product taken over all edges in G. For the product to be nonzero,
endpoints of the edges are disjoint and colors of the edges are disjoint. Hence,
the result.

Proposition 5.10. Letting G = (V,E) be a simple graph on n vertices with
edge κ-coloring φ : E → {1, . . . , κ}. Define ω : E → Pκ ⊗ C`nnil by

ω(vi, vj) =
φ(vi,vj)

ζ {vi,vj}.

Setting Γ =
∑
ε∈E

ω(ε), the exponential etΓ is seen to be a polynomial in t with or-

thozeon coefficients such that degt(e
tΓ) is the size of a maximal monochromatic

matching in G.

Proof. Nilpotent properties of Pκ⊗C`nnil guarantee that the exponential etΓ is a

finite sum of the form etΓ =

n∑
m=0

tm

m!
Γm. Further, for a given m, straightforward

application of the multinomial theorem yields the following:

Γm =

 ∑
(vi,vj)∈E

φ(vi,vj)

ζ {vi,vj}

m

=

 κ∑
`=1

∑
(vi,vj)∈E
φ(vi,vj)=`

`

ζ{vi,vj}


m

=

 κ∑
`=1

∑
(vi,vj)∈E
φ(vi,vj)=`

τ` ⊗ ζ{vi,vj}


m

=
∑

`1+···+`κ=m

(
m

`1, . . . , `κ

) κ∏
q=1

τq`q ⊗
 ∑

(vi,vj)∈E
φ(vi,vj)=q

ζ{vi,vj}


`q ,

where orthogonality of the τq’s guarantee that the product taken over q from 1
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to κ is nonzero only if (κ−1) of the `q’s are zero. Hence, for some q′ ∈ {1, . . . , κ},

κ∏
q=1

τq`q ⊗
 ∑

(vi,vj)∈E
φ(vi,vj)=q

ζ{vi,vj}


`q = τq′

`q′ ⊗

 ∑
(vi,vj)∈E
φ(vi,vj)=q

′

ζ{vi,vj}


`q′

= τq′ ⊗

 ∑
(vi,vj)∈E
φ(vi,vj)=q

′

ζ{vi,vj}


`q′

.

The multinomial theorem now further implies that

 ∑
(vi,vj)∈E
φ(vi,vj)=q

′

ζ{vi,vj}


`q′

is

nonzero if and only if there exists a matching of size `q (i.e., a collection of `q
edges whose endpoints form a pairwise disjoint collection) in the graph. Fur-
ther, the edges of this matching are monochromatic of color q′. The largest
exponent `q′ for which the expression is nonzero is thereby the size of a max-
imal monochromatic matching in the graph. One sees immediately that this
maximal exponent is the degree of etΓ as a polynomial in t.

6 Concluding Remarks

While graph colorings have been studied for many years, reformulating graph
coloring problems within a new algebraic framework opens up new avenues of
discovery and offers new opportunities for interdisciplinary research. In par-
ticular, these methods could be applied to Boolean satisfiability problems, as
their connections with graph colorings are well known and have been explored
in numerous works. The Boolean satisfiability problem, or SAT, is the problem
of determining whether the variables of a given Boolean formula can be consis-
tently replaced by true or false in such a way that the formula evaluates to true.
In fact, SAT was the first known NP-complete problem [7].
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