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1. INTRODUCTION

In this introduction, we list the basic concepts and the basic
theorems which are used iIn the main body of the paper. These theorems
are available iIn most of the standard textbooks on the subject, such
as those given in the List of References, though the proofs of some
of the simpler ones are not given and have, therefore, been included
here. All lemmas in the succeeding chapters are also of this nature.
However, to the extent that the author was unable to find them iIn
the literature, the theorems in Chapters 11 through 1V are original.
The definitions in these chapters also are original.

DEFINITION. A topological space (X,CO is a system consisting
of a set X and a collection O of subsets of X, called open sets,

* the following hold:
Dx- U u,
Ueld

@ TcO - U Ued,
UeT

AU LbeO—>UnU: e7.

If ¢X,J) is a topological space, O is said to be a topology

for X.

DEFINITION. Let (X,7) ke a topological space and let x e X.
A subset W of X is said to be a neighborhood (nbd) of x iF

30edJ?xelUMNW.



DEFINITION. Let (X,D) ke a topological space. Then 16 < (T

is a base for O<«*>, V x e X and V nbd UoFx, ] eBB X e B<U.

DEFINITION. Let Q&™) and (X®, &) be topological spaces. A
mapping F of X into X" is continuous with respect to $and <>

f~1[Ut] - {u e X|f(u) s U} e J.

DEFINITION. Let (X,:7) and (X*,r7") be topological spaces. A
mapping ¥ of X onto X" is a hotacomorphlsia of (X,CO and OX*,(7%) <=

f is 1-1 and ¥ and """ are continuous.

DEFINITION. A topological group is a system (G,=,0) 9 G,™)
is a group, (G,C7) is a topological space, and VX, ye G and V nbd

Wof xy , 3nbds U and Vof x and y, respectively, 3W —

QU™V™"u e U,v e 7} © W.

All groups (@nd topological groups) will be annotated
multiplicatively, with juxtaposition often used to indicate the
group operation. Hence, no distinction will be made between
(possibly unlike) qerations. Frequently, mention of group
operations and/or topologies will be omitted and "G" will be used to

denote a group (G,») or a topological group (G,=,:)).

DEFINITION. Let (G,*) ad (Gt,*™) ke groups. A mapping of
G Iinto G 9 xy) « *OC)<xx(y), V X, y e G, ia called a homomorphism.
I¥, In addition, is a 1-1 mapping of G onto G*, then « is said to
be an isomorphism of (G,*) and (G™,*)" A homomorphism (isomorphism)
of a group into (Onto) Itself Is called an endomorphism

(automorphism).



DEFINITION. A group with operators is a system (G,*,4>) 3
(G,™) B agroup and » is a set of endomorphisms of (G,-)« We will
also use "'G' to denote a group with operators. Two groups G and G*
with the same set of operators, are said to be isomorphic if 3
an isomorphism 2 G —>G" *V e $and V a e G, f(<@)) - <<(F(@).-

DEFINITION. Let (G,*,$) ke a group with operators. If Gyp»
Gl’""Gn is a (finite) squence of subgroups of (G,*) * OV > e $,
O((Gi) Gi’ o™Kn, & %-G, (€)) C?] - {e}., vhere e is the neutral
element of G, and (@) @ is an invariant subgroup of G™, Isi'™,

then G « GO/\ Glf\> eee > G « (e> is called a composition series
n

for G. If Eand E° are composition series for G * every term of E-
is a term of E, then E" Is said to be a refinement of E. Two

composition series are said to be equivalent if 3 a 1-1 correspon-
dence between the quotient groups of the two series 5 corresponding

quotient groups are isomorphic.

DEFINITION. A Jordan-Holder series for a group with operators
(G,»,$) is a composition series G » GQ’\ S N «
{e}y *"Vie{l,...,n}, GNis maximal in GN i.e., If H is an
invariant subgroup of G* M »«*(H)<H,V e$,and 9ifH GO,

then either H — G™ ™~ or H » G,.



DEFINITION. Let (X,C7) be a topological space and let R be
an equivalence relation on X. Then the decomposition X/R of X Into
equivalence classes together with the topology J1 »

{&CI/RIALé'yLA e 3} is said to be a quotient space and F Is

called the quotient topology-

DEFINITION. A topological group with operators iIs a system
&« < =—"(,*,0) i1s a topological group and $ is a set of

endomorphisms of (G,*)3 V ™e is continuous.

DEFINITION. A topological space is said to be regular if for
each point x of the space and for each nbd U of X, there is a closed
nbd V of x such that V < U. A topological space is said to be
normal If for each pair of disjoint closed sets, A and B, there are

disjoint open sets U and Vsuch that Acuand B V.

DEFINITION. There is a well-knowmn Ffinite sequence, ™,,..,T",

of separation axioms which a topological space (X,3) nay satisfy

(see, for example, Kelley [4]D . IFf (X,J) satisfies the axion T,
0$i«4, then (X,J) is said to be a T -space.

The following theorem is a well-known elementary result in
the theory of topological groups (see, for example, [6,p-53]).-

THEOREM 1. Let (G,*,J) be a topological group and let x e G.

Then the mappings LX and RX of G onto G 9 Vae G, LX &) «



Xa, R«(@) = ax, aalled, respectively, the left and right translations

by x, are homeomorphisms.

THEOREM 2. Let (G,*,C7) be a topological group and let e be the
neutral element of (G,*)» Then U eO <> x \J B an open nbd of e,

V X eU.

Proof: Let U e3 and let x e U. Then x1x = e e x~"hj. And,
since the left translation by yT is a homeomorphism, by the above

theorem, U & Therefore, xX"11! Is an open nbd of e. jj

THEOREM 3. IF¥ F is an isomorphism of a topological group
(G,*J) onto a topological group GL,—,") 3 the inverse of any nbd
of the neutral element e® of G" Is a nbd of the neutral element e of

G, then f iIs continuous.

Proof: Suppose f is not continuous. Then 3U" e (™ 3 f N[U"]
t0. Let xe f1UI. Then 9y e Ul a F(X) »y. By the above
theorem, Yy U™ iIs an open nbd of e*. Let z = F1(y~-). Since f is
an isomorphism, f 1fy "] - zf 1[U"], vhich —> zZz"f1[y~-WU"] -
f_l[U*]- Suppose f:-l[y:lU'] e(7. Then, since the left translation
by z * is a homeomorphism (Theorem 1), ¥ *[U"] e contrary to
hypothesis.

Hence, ¥ not continuous <> 3 a nbd of el 3 the inverse of that

nbd is not a nbd of e. ||



The following theorem gives a well-knom property of the nbds

of the neutral element in a topological group (see, for example,

Pontrjagln [6,p-55]>-

THEOREM 4. IFf D is a nbd of the neutral element e iIn a

topological group CX,»,J), then 3 a nbd V of e * VIV ™ UL

THEOREM 5. A topological group is T whenever it is Tu_

Proof: Let (X,*,(7) be a topological group d (X,3) is a

N—space. Let X, Yy e X. Then either 3 a nbd of X to which y does

not belong or 3 a nbd of y to which x does not belong. For definite-
ness, assume that the latter holds. Then 3a nbd Uof ya x t U.

By Theorem 2, Uy is a nbd of the neutral element e of X_. Then, by
the above theorem, 3 anbd V of e a ViV eW.  Since the right

translations R and I%/ by x and y, respectively, are homeomorphisms,
&[V] « W and "W are nbds of x and y, respectively.

Suppose 3z eX 3z eVxFIw. Then3 v, VeV ez =vx =Vy,
which »> zx'", zy1 e V. Hence, @D (zy-" - &zZ'"D(zyD -
X(Z *2)y "oy eV T-\CIHyAN . However, X tW e xy"" i Wy~
Hence, Vx ftw — O.

Therefore, (X,",J) is a T2~space. ||

The following theorem iIs an extension of the concept of a
quotient group of a group to a group with operators. The proof is

straightforward (see, for example, Jacobson [3,p-131])-



THEOREM 6. Let (G,=,$) be a group with operators and let H
be an Invariant subgroup of G. V *e $ and ¥ a » aH e G/H, where
aea G, define «(5) » <<(@H. Then (G/H,*,"!") is a group with

operators.

The following four theorems are well-knowm. For the proofs,

see Bourbaki [1,pp-85-87].-

THEOREM 7. (Schreier) If BN and E; &= ™o composition
series for a group with operators G, then 3 refinements E| and

EN of B and E®, respectively, a BN ana BN are equivalent.

THEOREM 8. (Zassenhaus) Let (G,*<I>) be a group with operators
and let H and K be iInvariant subgroups of G~V e $, <«<[H]< H and
c<[K] c- K. Then, if H* and K* are invariant subgroups of H and K,
respectively, 3V e $, og[H] H" and <K[K"] ~-K", the following
hold:

(D H*(HOK™®™) is an iInvariant subgroup of H" (HOK),

@ K*"(K/1H™) 1s an invariant subgroup of K*(KOH),

(3) the quotient groups (H"(HA K)/(H" (HNK")) ad

K=K HD)/(K"'(K A™)) are isomorphic.

THEOREM 9. (Jordan-Holder) Any two Jordan-Holder series for

the same group with operators are eguivalent.

THEOREM 10. Let (G,*,$) ke a group with operators and let E

I
be a Jordan-Holder series for G. Then if G.j//i+l is any quotient



group of E, ¢1/"6—+i #s simple, in the sense that if A is any

invariant subgroup of Gi/Gi+ N"NA]l <A,V e$, then either A «

1

{e}, vwhere e is the neutral element of or A=

Since a subset G* of a group G ""inherits' the property of
associativity fron G, a nonempty subset G of G is a subgroup of G
< the following hold:

(ADVa, beG\ aeG",

@A VaeG\ a"tedc",

() e e G, where e is the neutral element of G.

An equivalent condition is given in the following theorem.

THEOREM 11. A nonempty subset G* of a group G is a subgroup

of G <e»» Va, b eG", ab™eG"~.

Proof: Let G be a group and let e be the neutral element of
G. Suppose G* is a subgroup of G. Let a, b eG". Then, a, b
e G", vhich => ab ™~ e G"~.
Suppose that V a, b EG", & ~"EG*. LletaEG*. Thenaa ™
|

e e G". Hence, eal—a LeG. Let a, b £G". Then a, b_' E G-,

which = a( A « ab e G . jj

THEOREM 12. Let G be a group and let H be a subgroup of G.

Then HH — ffifl — H.



Proof: Let H be a subgroup of the group G and let e be the
neutral element of G. Let h eH. Then h = he e EH, And, since
eM«e,h=he=he eHH _. Hence, K<HHand H=KH _

Let h® EHH. Then 3 h , ™ eH J h" <iljhp*x Since H is a
group, hX’ h2 EH <=>hxh2 eH. Hence, H~NHH. Let h™ e HH '~ Then
3, b eH”"h" = h e« By the above theorem, ", hp e H «

h, b1 eH. Hence, HofflI'%.

Therefore, HH — HH-2 — H_ ||

The two statements in the following theorem are elementary
results which can be found In any of the basic texts on topology

and algebra, respectively.

THEOREM 13. If «: X —> X" and y8: X" —> X', where X, X, and
X" are topological spaces, are homeomorphisms, then 1 is a
homeomorphism and the composite oya is a homeomorphism. An analogous

result holds for Isomorphisms of groups.

The following is a well-knowmn result of group theory (see,

for example, Lindstrum [5,p-61]).

THEOREM 14. Let G be a group. Then the set of all
automorphisms of G is a group and the set of all inner automorphisms

of G iIs an invariant subgroup of this group.

The following result can be found in Kelley [4,p-47J.



THEOREM 15. A collection ™ of subsets of a set X is a base

for a topology for X <n> X m g and V B, B" elJ3 and ¥ x E BOB*

3B'EWB3IXxEB'C wAv.



1. A JORDAN-HbIDER THEOREM FOR TOPOLOGICAL GROUPS

Let G,*,$) ke a group with operators,0a topology for G ?

(G .7 mss a topological group with operators, and G — Gg 3
G d- rG — £} and G«Hb381’ré13_OH » {e}, were e is the

neutral element of G, be two composition series for (G,=)= Then the

Gi’ I$L.$n, and the HJ ., kj«m, are topological groups with the
relative topologies and the quotient groups Gl/G)mL, GBi<n-1, and

H /H , GHjdm~1, are topological groups with the quotient topologies
]

(see 2,p-71]>- The terras and the quotient groups of the series are
also groups with operators (wWith the set of operators $), by

definition of composition series and Theorem 1.6,

DEFINITION. We define two composition series to be topologi-
cally equivalent <« -3a 1 -1 correspondence between the quotient
groups of the two series * corresponding quotient groups are
(1) 1somorphic groups with operators and (2) lomeomorphic topological

spaces.

THEOREM 1. Topologically equivalent composition series are

equivalent.

11



Proof: This follons immediately from the definition of

equivalent composition series. ||

Let G,*,J,9) be a topological group with operators and let

£ e G D . and £ « (H_ V. . be any two Jordan-Hollder series
1 1~ 0$1*n 2 J O#j«n

for G.

Since Jordan-Holder series are composition series, we have, by

Schreier™s Theorem (Theorem 1.7) that £° » (G D and £° »
1 i3 O«<i<n-I 2
O™
'GED) where Gy — @GaHjGN A, , O«i<dn-1, O«j«n, and H —
310 (’\(n_l 13 1 3 1+ 3

(GJHH JH ™ Osj«n-1, O«i$n, are composition series which are
(equivalent) refinements of £~ and £°, respectively. Furthermore,
it is clear from the definition that a Jordan-Holder series has
no proper refinements. Hence, (G™ € E] <> G™ « £V ad

E *2 jl S B2y

Now, V i, j £ {0,1,...,n-1}, g+
Giai1.J)Gia/(GiOH.J4-1)G1+1 is isomorphic to Hj./Hjcli+i *
Gurtt!HH. ./ (GiviaHjDH-j+1 (see Theorem 1.8).

Since the Jordan-Holder Theorem requires only the existence of

this set of Isomorphisms, the mappings are not given explicitly in



the usual proof of the theorem. (See, for example, [1,p-37] and

[3,p-141].) We therefore prove the following lemma.

LEMA 2. Let 1™ = (G D and V ¢ (E D be the
1 i O«i<n-1 3 0$j«n-1
o O™1Sr.

series described above. Then, V i, j e {0,1,...,n-1}, the mapping
N/ VoA _J<« N AN/ T " =C RN/ =W « i/ d0,
where x e GiAHj’ fij(5c) = x(Gi+ A Hj)Hj+ is an isomorphism.

1 1

Proof: Let i, Js{0,1,...,n-1} and let ¥ - P>_ We First

_and G. is an invariant subgroup of

note that since G_AH_ .c.
i g+l i i+1

<V CaMz PRI X =\ VNV LY e N/ \NAN/S hen 3
X cGjFIHj ana grva  Giwg ? Y — XO1a— Zhen y(Ge t H144)G1a —

Yo +F2 ITH+ 1) = BI+ICI+XCId1+PD— But °14X a Sroup

UIl4x S CE+X T T 814X Gi+X "TCl+X- So— YGFTHIHXOSE+X T

= \W\AN/S< ™ * =TT JCCi+X"  HOeiT ¥ 7 ¢ GErEDCE+X—

13

i Xz which = G13/Gi—js1

is the domain of F.
Let z - ZCCGnuaNHPHgq © HjaMp j+1*x 1men 3 NG HjJg and

hj+i 5 HJ+1 * Z *" Xj+1» Whlch " 5 " shig 4 JG+gaHHj+1= SIS



14

G. AH_ cH_ end H_ is an invariant subgroup of H_, ...OH.)*
i+1 }] jJ+i J =1 ]

Vi" WSwn \7 Hifce_5 _xViVi<CGi+inajd— Ancr eitice
I-L]+1 ie a group, I=34Bjiq * "T+17 "ThECh "% % 58 o <G+ HJS "
XGR+IMHPHJ+1 " T ™ Where * "*xGirHj+IDCi+1* Therefore= f is
a mapping of G™A™ j+a1 onto

Let ix - T <1 _So - t 8/G1 j+i.
where S e <O, K P » FTCY) . Then G BN =H 1
x2(G_ N\UDH - Since @) I—\|J+I is an invariant subgroup of £J .

iH-1 3 j+1

(&) Xo € GiMN\H ™Hje and (3) GA ™ C.Hj » We have that
<P CRI+IANWVE = >2>Ca, 1"\WVIE == XIGCGR«\/ " 2GR«<N\/ T
Since Gij+xaH ™ Gi-pa and XN X e G™ which is the group
of which G is an invariant subgroup, — XRNCE+IN*V
<> X « X - Hence, x » X . Therefore, ¥ is 1-1.

a—— =

Let m1 — 55 * G334+ DPDSI+1 ™ U6, J+1"
Then, by definition of multiplication of cosets, > -
XR2GRABHICI+HI T A°dT TG PPTOD ™ X G+ 113+

CRGCHI+1° \/ N\ = W HEH " "\ AN/ Thereso "

"preserves’’ the group operation.
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Finally, Vi, je {0,3,...,n-1} and V 9, x> -
«CX) (G1+1N Hi>rzea — V X c

Therefore, V i, Je{0,1,...,n-1}, F is an isomorphism.

THEOREM 3. Let (G,*,0,%) ke a topological group. Then any

two Jordan-Holder series for G are topologically equivalent.

Proof: Let I = (G and 1 - H D be any two Jordan-
O«<i$n O™

Holder series for G and let and Z» be the (equivalent) refinements
of E and respectively, described in the discussion preceding
Lemma 2, aove. Clearly, we need only show that the mappings f

defined In Lemma 2 are homeomorphisms.

-1
Let 1, Je{0,1 n-1} and let f — #_ Then ¥ = B+

- -V s _ ENNIH+—@m=<""here Il e <Ggri\/™

— XG1=3+1 -
Let U'HVVHj §+ be a nbd of the neutral element in j.j/Aj 144,

Then, by definition of nbd in the quotient space,3 U"CG “UT is a

nbd of the neutral element e of G and a U « (Lt AB™MHM™ By the

definition of Ié, the fact that H. . is an invariant subgroup of HJ
J -l

which contains G_ 1A I—‘|] , the distributive property of intersections,
1+
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and the feet that Hjii<j+a *" Hjaas SiNce Hj+l S 8 grops ———
S D ANiE -1
— =" " A= gANDTS g <<™ NN/
- QU NGIQO\YYNVE=CE <AV
T D=H,, ISIAHDES IHI+ DG E <A \/

— ==>"\/""GEBE\/ &SN\

And, £2tU] ""FILO-A<GIQHDIB;j 1+11 - U AGCG-Q\H)D))IG13a
« WUTIG DS Ji1 (as Is apparent by analogy with the foregoing),
which is a nbd of the neutral element iIn Sy/Ci-144> """arefore, T

is continuous (see Theorem 1.3)a

The proof that 1 is continuous is entirely analogous to the
proof that f is continuous. Hence, F Is a homeomorphism of
VCE , 30 O N AN 7

Therefore, » i, a@,1,...,n-D, F is a homeomorphism. ||



111. TOPOLOGICAL GROUP GENERATED BY AN INVARIANT SUBGROUP

THEOREM 1. Let (G,*™) ke any group and let (H,») ke any
invariant subgroup of (G,*)= Let T » {aH]a e G} and let

L AIT" © T>. Then (G»*» D) 18 a topological group.
AeT* ~

Proof: Clearly, the union of the members of any subfamily

of 3 i1s a member of 3and G - since anp two distinct
members of T are disjoint, A A e J —> either A - Oor Aq

and A are unions of members of Jand A™A: is a member of T or a
2

union of members of T. Hence, Ay Ao eO - Ao eO. Thus, 3is

a topology for G.

Let X, ycG and let W be a nbd of xy in (G,C7). Then xH
and yH are nbds of x and y, respectively. And, i Wc 3* W W
and xXy1 e W_ By definition of 1 >anymember of (fcontaining xy_1
must contain the unique member xy1H of T of which xy 1 is a member.
Hence, xy-1H cw, But, xyH — xHy"? — xHHy 1 — xHH 1y 1 »
OCHXyH)'™" 1, by Theorem 1.12.

Therefore, G,*,F) is a topological group. ||

DEFINITION. The topology O described in the above theorem
will be called the topology generated by the invariant subgroup H

of G.

17
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THEOREM 2. Let <G,-,J) be a topological group. Then 1ia the

topology generated by some invariant subgroup H of ¢ <> VT tJ 3 T
00,3We3 *w+ 0, WCT, and no nonempty member of Sis a proper

subset of W.

froof!

if J is the topology generated by an invariant subgroup
of G, thenVT tJal 00, 3atG aaHcT. Clearly, aH e 3, aH
0O, and no nonempty member of J is a proper subset of aH.

Conversely, suppose that V Tc J aT0 0, 3WsJaWO Q

W =T. and no nonempty member of 3is a proper subset of W. Let

V—{HeJWO O andd T t3 ¢ T O Oand T is a proper subset of W)
and let e be the neutral element of G.

We will First show that 3 a unique member W* of Vb e e W\

Let WeVad let Xx eW. Then W e J, which »> X is a nbd of

(see Theorem 1.2), vhich = 3V c3a esVand VCa™*. Let

W

Since the left translation by * is a homeomorphism

(see Theorem 1.1) and W cV, XV t Since Wc Vc x' W,

xw- C W. Hence, by definition of H x«* — H, vhich > W - _""V/

which « e C\,\}«_ gudblggé gv\o/" 8 V?e eW'. Then W*NW'" E ™ and

{c}y cW"HW'" cW . Hence by definition of V, W O W W Similar vy,

since W*fi WOW'" — W'. Hence, 3 a unique member W of V 3
e eW".
Since W isanbd of e. 3anboVofe aW- —h(se »

Theorem 1_A). Hence. e (Tae e U=V, which —> UU* — W/

Eut, ec H1 "> Hc o selice”™ gjnce W eV, U-W , vhich *>

UaUWw l=W'_. So,w»w eW »w , w e U, vhich »
1= >
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wlw'z'1 e UU1 = W_ Therefore, W is a subgroup of G (see Theorem
1.11).

Let X e G. Since the left and right translations by x are
homeomorphisms, XW, Wx e 3. Hence, 3 W eVs WEW .. Since the
left translation by x21 is a homeomorphism, x Hj e3. And, W c.>XW
— < W, which X HF * W*, vhich =W B xXW . Hence, xXW e
Similarly, WX eV. Since e e W => x e XK"AW"X and since XWAW"X
Cc XW and xtf"fA W"x < W"x, we have that XW « XW"AW"X = Wx_ There-
fore, W is an invariant subgroup of G.

let H-W_. Let Ted?Tt+tO0Oand let x~ eT. Since Hc.G
and e s H, G = XLE VTXH' Then T(\ Xx"H + O, TAX"H c x"H, and
TAx"H e 3. Hence, by definition of V', TAX"H= Hx which =&

TP x"H. Hence, T - /e\ IXH’ Therefore, Te3 <> T - Oor T »
X

x e M-
Therefore, 3is the topology generated by the invariant

subgroup H of G. Jj

COROLLARY 3. IF G,*,J) is a topological group, then 3is the
topology generated by the invariant subgroup H of G <=> H e 3 and no
nonempty member of J is a proper subset of H. Furthermore, if 3 is
generated by H and if W ¢ 3 *W i O, nononempty member of 3
is a proper subset of W, and e e W, then W H.

Proof; This follows at once from the definition of a topology
generated by an invariant subgroup and the proof of the above

theorem. |1
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COROLLARY 4. Let (G-7.J) e a topological group. IF Ois
discrete or if 7 is finite, then 7 is the topology generated by an

invariant subgroup H of G.

Proof, if 7 1s discrete, then the subgroup of G consisting of

the neutral element e of£ G la a member of Oand properly contains no

nonempty member of O.Hence, by Corollary 3, a&ove. ?Is the
topology generated by {e}.

Suppose 7 is finite, containing, say, precisely n sets.
Suppose 3 Te7?T>*0and 5VWe7 ?W 1 Oand W c T, 3a non-
empty member W of J 3 W® is a proper subset of W.

Since 7 is finite, 3mcN 3 mén and 9 3 only m distinct open
subsets of T. But, by our hypothesis, each of the subsets contains
as a proper subset some member of T. We conclude that 1 finite
= VTcJ5T+0,3We7 9W + O, W c T, and no nonempty member
of 7 is a proper subset of W.

Therefore, 7 is the topology generated by an invariant sub-

group H of G. ||

Theorem 5. Let (G,*,5) ke a topological group 9 7 is the

topology generated by the invariant subgroup H of G. If G/H is
finite, containing, say, precisely n distinct elements, then 3

precisely 2° distinct elements in 7.

Prook , Suppose G/H is Finite. Then 3 a 1-1 correspondence

between members of f and subsets of G/H. Hence, if 3 precisely n

distinct elements in G/H, 3 precisely 2° distinct sets in J. ||
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LEMMA 6. Let (G,*,7) ke a topological group 3 {e} e 7, vwhere

e iIs the neutral element of G. Then 7 is the discrete topology for G.

Proof: By Theorem 1.1, V a e G, La is a homeomorphism. Hence,
if{e}e7, thenV aegG, La[{e}]-{a> e

Therefore, {e} e 7" => 7 discrete. ||

THEOREM 7, Let (G,*,7,4>) be a topological group with operators
3 3 is the topology generated by an invariant subgroup H of G. IF
o<[H] c H, V*e Ff(as will be the case iIf $ — O, for example), then
all quotient groups of Jordan-Holder series for G are either discrete
or indiscrete with the quotient topology. Specifically, if G *

GO’\ Glf\ 3G - {e}, vwhere e is the neutral element of G, is a
n

Jordan-Holder series for G, then, for O«i«n-1, the quotient topology

7G ,/GA, £For \/Gl_|_1 18 discrete < > H A Gic G1.|_1_
1 §Th

Proof: Let G,*,7,%) be a topological group 3 7is the
topology generated by H, where H is an invariant subgroup of G 3

<[MHl < H, Vx e $. LetG«G0 613---OGn « {e} be any Jordan-

Holder series for G and let GfL/Gl+1 be one of the quotient groups of

this series.

We first wish to show that any subset A of G§J/G™° ® "

_UAau HnG_and 3V 1eA, af)(HF\6 D2OO is aninvariant subgroup
ae [ i

T G./G._ A A,V -
o) GI/GI+19 <X[A) c e
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Clearly, such a subset A la not empty, since e e HAG™
eeA. lLeta, & e A. Then, by definition of A, 3&¢ © a2
eda@ * z%( ) a2 e HAGS(- Since H and G are subgroups of G, aue a2

2

£ BAGi »> al, at2'1 c HAGi»vvhi ch —> A.A*:1 ®HAGA_ Hence, by
Theorem 1.11, H is a subgroup of Gi/®q+1>»>

Since H iIs an invariant subgroup of G and is an invariant
subgroup of itself, we have that, V g e G, g(HAG™) » gHAgG™
Hg AG.g — ENGOHg- Thus, H &A™ is Invariant.

lLet g e GG, Then g ™G:- lLet xe gA. Then3 ae Aa x »
ga. But, as A= 3 aear™ae HAG:.. Let g eg. Then ga e
gCHAG™) « (HAG™M)g, wWich » 3 a” « BAG™ ga » a"g. And,

BHG”™ A> a" e A. Hence, since unequal cosets are distinct, X —

ga — a"g e Ag, which —> gA ™MAg. The proof that gA ™NAg is, clearly,
entirely analogous to the foregoing. Therefore, A is an Invariant
subgroup of G.

By an assumption concerning H and by definition of Jordan-

Holder series, *[H] ™ H and rf[G] ™Gir V ¢* e =-. Let X e </HAG:]-
Then 3 h cH and g eGi 2 x ™ <x(h) - «(@), which «> x e HAG _

Hence, V c\e», c<[HEO\G | [H]. Let «e *and a eA 9a e HNG:.
Then *<a) — ©«*Gj) — «<*>Cjq © G4 C Gj* SinCe H B imnariant

and a E H, aG N H, vhich »> *(@ < H. So, <@ c. HAG™ V a e A.
iI*rX
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Therefore, H «e $, <v[A3c. A.

But, Gi/Gi+1 is simple (Gee Theorem 1.10). Hence, A ¢ Gij/C1a
or A- &h Since HAG ;c. G®, It is clear that such a set A exists.
Suppose A - €), then, by definition of A, e =Li+j. N HGg™= There—
fore, there exists only one such set A.

Suppose A — €)- Then 8"e™HdAG™Cc"™_ Let x e e. Then

XxeG_ and x e xH AG_. LetyexHAGI_ Then 3 h e HAG a y — xh.
i i

And, h e HAG™ = h £ e, vhich »> y » xh ee since e - Gj+ IS a

group. Hence, xH AG*c e. Thus,(2- e - _OH AGN) -
C U-XH)HG. C &* - Therefore, {&} e /0 and we have by the
< ee 1 ~ i i+l
above lemma that 3 - is discrete.
Ver+i
Suppose A - €i/Gi1- BetBe/c c: 3 B + O. Then the set
i itl

- |J be( and3 asubset Dof G a W dH) AG.  Let d”

e i
e D. Let xeB *3bex—>be d"HAG*. Let y e G_j/eE+I" Then
3zeG /G N yz "™ X (since isagroup). lLletzez Nz
e H AG™ (Buch a z exists since A « SJ/Cj+i™* Then ey "™wv="b .,
which =>y — bz"1. Sincez e HAG: ->z"1 e HAG: (since HAG: is a
group), we have that y « bzle(dH nG™NH AG™ * dH AG; < VS. Hence,

y(Q(t> ¢ O, vihich »> y e B. Thus, B » ¢j/Cidi* Therefore, /G
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is indiscrete.

This completes the proof of the theorem.

By the Jordan-Holder Theorem, if (G,*,$) and (G",*,4>) are
groups with operators ? 3 non-equivalent Jordan-Holder series Z and
1™ for G and G", respectively, then G and G* are not isomorphic.

Let (G.".CVi>) and (G " ,J" ,4) be topological groups with
operators ? G and G* are isomorphic. Then, by Theorem 11.3, if
3 Jordan-Holder series Z and 1I* for G and G*, respectively, 9 Z and
Z" are not topologically equivalent, (G,C7) and (G,J") are not
homeomorphic topological spaces. A partial converse also holds, as

follows:

THEOREM 8. Let (G,-,J,4>) and (G",*,J",$) be topological groups
with operators s Jand T are the topologies generated by the

invariant subgroups H and J® of G and G", respectively, 3G and G

are isomorphic. Suppose, further, that V @e $, <[H]< H and

a[J*"] € J*. Then, if 3 Jordan-Holder series Z and Z* for G and G*,
respectively, 3 Z and Z* are topologically equivalent, (G,0) and (G,J%)
are homeomorphic topological spaces. Specifically, two finite groups
with the null set of operators which are isomorphic are abstractly
identical <= a Jordan-Holder series for one is topologically

equivalent to a Jordan-Holder series for the other.

Proof: Let (G,*,:7,%) ad (G",",77,™) be the topological groups
described in the theorem. Clearly, iIf 3 topologically equivalent
Jordan-Holder series Z and Z* for G and G", respectively, then

any Jordan-Holder series for G is topologically equivalent to



25

any Jordan-Holder series for G*.

Let f be an isomorphism of the group G onto the group G and,
V a e G, denote f(@) by a*. Then, changing the notation of G", if
necessary, we can write a"=a, V a e G.

Since H is an invariant subgroup of G 3 X[HJc H, ¥« e 1,3

a Jordan-Holder series 1 — Ci)o*;i«n Tor G 5 H ™" G_ for some
k c {O*l Nk Then V = (FAGE3dMO«iE« "" GPoxi«n 18 3 Jordan—_
Holder series for G* "G~ &GN, Vi e {0,1,...,n} ad, specifically,
H- H" - G

Since Z and Ef are topologically equivalent, by hypothesis, we
have (see Lemma 11.2 and Theorem 11.3), V j e {0,1,...,n}, the
quotient space G = (GJTt CpCj+i/>CjOoCcpCj+1 " CjCj+PCj+IG§+1 "

G_/G_ . is isomorphic and homeoraorphic to the quotient space
J 3"

, 3 F CBC=_PE\NA 225+l AWV E -+ _CgANN\/s
Vie{l,...,kK}, G Isasubgroup of G5 H <G . Let j

e{l,...,k} and let e be the neutral element of Gj /Cj* Then @ =

G - U xH, vhich « “~_{a> is open in G,J), vhich » e is
] X e aee

open In G /G , which *» (see Lemma 6) ¢j j/°jJ s discrete, which
5 3

= Vie{l,...,kK}, CNI/GI B discrete.
Specifically, then, G /G{ is discrete, which «< Gj e J*_. And,

G"/G" discrete » G™ open in G", vhich == 3 U" e F MU AG" @GN,
o = -

which «> GN e T+ Similarly, it can be shomn that G, 3>""**"(\ E 3*~*
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llence, G™ ¢ K* ¢ J*, which s» H « H* ~Jf.

Since T is an isomorphism of G onto G, ¥ is an isomorphism
of G* onto G. Hence, we can show in an analogous manner that J =
P~ ] » J° oH « H\

Therefore, J* = H* and we have that 3 and J" are homeoraorphic.
Specifically, if G and G™ are finite and $ « O, we have by

Corollary 4 that the above result holds. ||



1IV. MAPPINGS OF A TOPOLOGICAL GROUP ONTO ITSELF

DEFINITION. We define an auteomorphism as a hotneomorphism of

a topological space onto itself.

DEFINITION. Let (G,*,3) ke a topological group. We define
an autoauteomorphism of (G,*,4) ato itself as an auteomorphism of
(G,™ which is also an automorphism of (G,-)» i.e., an auteomorphism

*of G, 3 VX, ¥ysG, x(y) - <CY«¥)-

THEOREM 1. The set ft of all auteomorphisms of a topological
group G,«,5) forms a group (ft,*) under composition of functions.
The set ft* of all autoauteomorphisms of (G,*,J) forms a subgroup

(&" ,=) of this group.

Proof: If <x,/3 e ft, then (see Theorem 1.13) £A"3,x e ft. And,
the identity mapping ™ of G onto itself is an auteomorphism of G.
Hence, (Gee Theorem 1.11) (ft,*) is a subgroup of the group of 1-1
mappings of G onto itself and, therefore, a group.

By definition, ft* < ®. Hence, if «,/3 e ft*, then e&.
Since (==e Theorem 1.13) the composite of two isomorphisms iIs an
isomorphism and the inverse of an isomorphism is an isomorphism, we

have, then, that <x,/3 e ft* —> 1 e « Clearly, u e ft*. Hence,

27
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(see Theorem 1.11) ffil*,*) Is a subgroup of the group of 1-1 mappings

of G onto G and, therefore, a subgroup of (@»*). |]j

THEOREM 2. Let (G.".D) ke a topological group. Then the
set of all inner automorphisms of (G»=) forms an invariant sub-

group &,*) the group (ft.",*) of autoauteomorphisms of (G,*).

Proof; Let eThen ., by definition of inner automorphism,

3aeG VxeG, 0<(x) - a-x-a"r But, arx*a X — Lii* Rer_i(x),

where L and R )i(a re, respectively, the left translation by a and
a a

the right translation by a1. Hence, is a composite of homeo-
morphisms (Theorem 1.1) and, therefore, a homeomorphism. Therefore,
since inner automorphisms are automorphisms (Theorem 1.14), -
And, fit" is, by definition, a subset of the set of ail auto-
morphisms of G. Finally (see Theorem 1.14), (™,=) is an invariant
subgroup of the set of all automorphisms of G. Hence, (.£,*) B an

invariant subgroup of (&",=). ji

THEOREM 3. Let (G, *be any topological group and let

(ft,™) be the group of auteomorphisms of (G,0)» V U™ c M,

define the set By y = e fL|<F[U m A% pet 2N denote the set
1, 2

of all even positive integers. Let febe the family of subsets of &

defined as follows; B e te <> 3 a Finite sequence Uiz Us, oo - U

n e 2N, of members of (7?B &aBy ™ O ~N O .\ V-
1, 2 3, 4 n-1, n

Then ft is a base for a topology for ft 9 ((E,*,) i1s a topological

group.



Proof: VU, U2 e0> N\ g © ® ad *eft & By _4U] E *»
X 2

»»«/ . Hew.. a-0ii02Vj\,D2-

Clearly, the intersection of two members of fe is a member of

ft. Hence, Gee Theorem 1.15) ftis a base for a topology for

Let ¢, x C Let W be any nbd of ¢ e< _  Then, by
1= 1 =
-1
definition of a base for a topology (see p-2), 3 Be ft3 £
BcW. Then3ne2Nand U , U ,...,U ¢'IB_un"
= >» 1= 2 3 4
5 _
" Oro-7* nf
Let i e 2H ~ifn. Then > Up C2NF2 NN
is
ug—r HK.ce— BTt >u2? Voi [uzi Nee™ N VVEv_1—Y,,
nbd ©F _] a''d BD eI " _«™i0-— o]
is a nbd of <¢.
a"l - {«E 4| 0TYOID] - u1, «""TtjJusl] -
o il 870 2 \V4 EERLRVA o
— {*E a|0<ttJ)(l _ll_il-!l!l-"-v -w <>(21IU3Illll>alUIII--II -w
<211y~
Let & e Then 3™ e s B Let

i e2N 3 iun. Then D] - «Vi-17 2*Uj—IN "" U§? which
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S VU AN = Ug" "™ which "% B® Hence= Bl “"BD C B*

Therefore, @,".5e) is a topological group. ||

COROLLARY 4. Let 'U.Abe the nbd system of u in (5,*,17).

30

ThenUerg<—>BBef> 3B=BU HHBU uO...DBu u , where
T 2'72 n n
U U e3, 3 BCu.
1 XX
Proof: Let U e 7/7. Then e U, vhich «<=3BefcO9ieB™NU._
Ad, Befc->3 me2N 9B -B OB D_.—HB ,u for

1* 2 3*4 m-1 m

Ul,U%,...UJJJ c 3. Suppose 3i e2K 3iwaand 9 U U. Then

+
1IIIIA

ufu. ™ Is MNUJ, which => L i B, contrary to hypothesis.

Suppose U @ & -5 3 B e j8 with the given properties. Then

1 eB c.u, vhich > U e K- IR

THEOREM 3. Let (G,*,J) ke a topological group 9 3 is the
topology generated by the invariant subgroup H of G. Let ($5., ")
be the topological group of auteomorphisms of (G,”) described iIn
Theorem 3 above. Then the following are equivalent:

(1) 3 is finite.

(@) 3<is the topology generated by an invariant subgroup

(A,-) of (fi.,0.
©)) is compact.
Specifically, if-is generated by an invariant subgroup

(A,-) of O.-), then A — a4 ©Q0/HEH ,aH-
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Proof: (1) >» (2). This is an immediate consequence of

Corollary 111_A.

) &> (). Suppoes that 3 is not finite. Let T z *T + 0.

lLet WsON3WC TadWO Q Let<s W. Then 3 U, e3,

forn £ 2N,3 *eB -B , OBy ~D...OBy ™ c.W. Since 3is
1* 2 3* 4 n-1" n

infinite, 3 e 372 i A ADFIALFk % 5 RN

and B #O_. Then B" « BUB O 0. Hence, B e B™ +
Uj "Uk Vv ok

O, B* C.W, and B* O W. Therefore, by Theorem XIl1.2, 3™ is not the
topology generated by an invariant subgroup of (<2,%).

D » (3)- Suppose 3is Finite. Let U - Ui+ £ J, Tor some

index set 1, be any convering of t. by nonempty members of 3%. Then,

Viel,3 an index set Ji and a family Bl » (B*?J ¢ 7 of members
of USB5U, » . Let B = I J» Then Bis acovering

offt -
Suppose 3 precisely n distinct sets in J. Then 3 precisely
2
n-1 distinct nonempty sets in 3and 3 m e N mMm(n-1) 3 3 precisely

m distinct members of )0 of the form B~ ~ , for U®, e>/. And, in
1 2

a manner entirely analogous to that used In Theorem 111.5, it can
be shom that 3 precisely 2™~1 distinct sets in ft, which > 3 is
finite. Hence, by omitting, if necessary, any repetitions of sets

in B, we can obtain a finite subcovering B® » (Bk% o K of B, vhere

KCU [i EI,j EJ ¥ Then the family U™ —
J u
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covers fit. Therefore, 1™ Is compact.

() —>(@)-. Suppose 1ftis compact. Let B = "B ,aY ©
Since He 5, Bﬁ'ﬁ e fc VU e, and o<[E] € VvVefi.. Hence,
|

B 1s an open covering of Q. Thus, since 1™ is compact, 3 a finite
/

subfamily B" of B which covers S.. Then 3 n e N 9 B* contains pre-

cisely n members. Let a £G. Let « ke the mapping of G onto G

3 <H(X) >>>< , \Vx<xeGO>< M and x t aBj, <<(X) = ax,'9 x e H» and

c<(X) » a'""'?™*, V x e aH. Then, clearly, e A 3 <[E] = an, vhich

> eB <= U » aH. Therefore, B eB", VacG. Hence,
H,U Hy>aH

3 meN* mn and 9 3 precisely m distinct members of G/H, which =>(by
Theorem 111.5) precisely ''T distinct members of 1. Therefore, 1is
Finite.

Finally, suppose that is generated by an invariant subgroup

of OS,_)_ uc A - Clearly_ A %% a<d A 6 B C

Suppose 3 Tel ?T OO and T is a proper subset of A. Te3 >3

- Jor Boi-a A B~

Let e A. let i e2N? in. IFf — 0, then

Bc £ «>/3[Ui_s] - Ui_1, VG eB, vhich > U - U~N_ If U 4, O

O, then aH, aH aHeG/H5U —aHVaHU ._._UaH. Ad,
1 7/ ® NA
BcA»,V~eB,/3[U.l U_...Ua™] -/JlaHJuU _ . _
—aHV.,,.UaH-U - Hence, Vie2N9isn, U —-U - Since
1 m i-1 1 x x
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e A, <U. 1j*>U . 1_Vie {0,1,...,n}, which == «e B. Hence,
i- [

B » A, which » T = A, contrary to hypothesis.
Therefore, by Corollary 111.3, @A.,*) is the invariant subgroup

of (&,™) vhich generates 3%. |j

THEOREM 6, Let (G,",5) be a topological group and let
G>*>1%5) ke the topological group of auteomorphisms of (G/7)
described In Theorem 3, @ove. Then the following hold:

(D) 3™ isdiscrete <=> G iIs Ffinite and 3 is discrete,

(@) 3 is indiscrete <=> 3 is indiscrete,

(€)) is a T™-space Osi«3d) <» (G,5) Is a Tspace.

Proof: Suppose G is finite, say G= {,a,.,8}, and 3is
N n.._HB e 3=
a, £l a a L] a ®
GhUCE A R R R

Lenma 111.6, 3™ isdiscrete. Conversely, suppose G is Ffinite, but

discrete. Then {o} = Hence, by

3 is not discrete. Then 3 U e 3 3 U contains more than one element,

say U = {al,---,an}, and since G is finite, we can choose U 9 U

properly contains no nonempty member of 3, Let B = B [ i
V1

BU U e B3teBand}3ke{l,---n>9U:UR- Define the mapping
n’n

9 OO = L-(), VX €G 9 x i Uk, < Ay for as e U, Id$n,

and™~(a D= a - Clearly, B. Hence, {L.} i 3%, which »> is

not discrete. Therefore, @) holds.



Suppose Ois indiscrete. Then )6«= {B™ &0 O™ 3 £»0}> which

»=> (JO is indiscrete. Conversely, if 3 is not indiscrete, then
3Uel 3IO0OOand U1 G. Hence, V us U, u-U is a nbd of the
neutral element e of G which is neither empty nor G. (Note that iIf

U =G, thenG=u=U.) Let xeG? X”™~u U. Then L™ e

Bu-lLU,xu_lU* which »»> Bu—lﬁ,xu_%fj i & Since c, is not a member of
this set, it Is a member of and. hence, of which is not O and
not®.. Thus, C/g is not Indiscrete. Therefore, @) holds.

By Theorem X.5, a topological group is a T™-space whenever it
is a To—space. Suppose G,J) is a T"space. Let £ ft 3 <*0/3.
Then 3x £ G 9 *}(X) 0/5(X), vhich —> 3 nbds W) axd DAY of

and M(X), respectively, 3 **/3(x) = ~* And, for convenience,

we can assume that these nbds are open. Since ¢ and are

auteomorphisms, and N(X) &e ©nen nNds x* whith =

the set A » FT™U Hp MU, . is an open nbd of x. Hence,~N[A] and
cOr G

~NAJ are open. And, “Al ,"s[A]c: N T~ =

sshi<zh = = "A-/IA/\AyIAI g CiMriy™ BA’4A] /\\_F[A] www O] ,en
nbds of &4 and”™ , espectively. Hence, @,”™) is a -space.

Conversely, suppose (G,~) is not a T"-space. Then it is not
a To-space. Hence,3 X, Yy £G*x Oy and ™ every nbd of x is a nbd

of y and every nbd of y is a nbd of x.

Define the mapping of G onto G ™ X(@) »u(a) = a, Vae G

34
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aa~xand aNy, »=<x(X) =y and 4¥) =x. Let Uz"J. Since G,/)

isTg, XEU <>y eU. Ad, (@) »a, VaesU—-IJa>< and a # y.

Hence, *[U3 » U. Let T e3L)J)- Then ¢e T <o»> 3 U-.-.,TJ e/ a

B B fl .--(IB > which, Corollary 4, holds if and
IRTACR Thixt a8, > which, by Corollary '
B 2’72 n n

only iIf ceT. Hence, (3, 9) isnot T .

Let B" "*B O --.TIB _ efc. Vlefl.,3,... ,n-I>, let
12 n-1" n

F «{vel(lllv™ U3}and 9 3 otsRa~[Ul = V. Then B
— | — | u B Ui 'Ui_|_|

U_B “ KB s Vhich is an intersection of closed sets
eFi Ui—V VeFI/ L{,V

and, therefore, closed. Hence, B", itself an intersection of closed

sets, iIs closed. Therefore, B is closed. V B eV3.

Let x ge@B.and let He 79 ¢e U. Thenilb B~NUJ, Ad,

by the foregoing, B is closed. Hence, Tp is regular.
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