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I. INTRODUCTION 

In this introduction, we list the basic concepts and the basic 

theorems which are used in the main body of the paper. These theorems 

are available in most of the standard textbooks on the subject, such 

as those given in the List of References, though the proofs of some 

of the simpler ones are not given and have, therefore, been included 

here. All lemmas in the succeeding chapters are also of this nature. 

However, to the extent that the author was unable to find them in 

the literature, the theorems in Chapters II through IV are original. 

The definitions in these chapters also are original. 

DEFINITION. A topological space (X,CO is a system consisting 

of a set X and a collection 0 of subsets of X, called open sets, 

* the following hold: 

(1) x - U u, 
U e J 

(2) T c 0 -> U U e J, 
U e T 

(3) Ur U2 e 0 -> Uxn U2 e 7. 

If (X,J) is a topological space, 0 is said to be a topology 

for X. 

DEFINITION. Let (X,7) be a topological space and let x e X. 

A subset W of X is said to be a neighborhood (nbd) of x if 

3  O e J ?  x e U ^ W .  

1 
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DEFINITION. Let (X,D) be a topological space. Then 16 c CT 

is a base for 0 <«*>, V x e X and V nbd Uofx, ] B e BB X e B c U. 

DEFINITION. Let (X3̂ ) and (X', a') be topological spaces. A 

mapping f of X into X' is continuous with respect to $ and <»> 

f~1[Ut] - {u e x|f(u) s U'} e J. 

DEFINITION. Let (X,:7) and (X',r7') be topological spaces. A 

mapping f of X onto X' is a hotaeomorphlsia of (X,CO and (X* ,(7') <*=> 

f is 1-1 and f and f-"'" are continuous. 

DEFINITION. A topological group is a system (G, •,0) 9 (G,*) 

is a group, (G,C7) is a topological space, and V x, y e G and V nbd 

l -1 W of xy , 3 nbds U and V of x and y, respectively, -3 UV 

(u'V̂ 'u e U,v e ?} c W. 

All groups (and topological groups) will be annotated 

multiplicatively, with juxtaposition often used to indicate the 

group operation. Hence, no distinction will be made between 

(possibly unlike) operations. Frequently, mention of group 

operations and/or topologies will be omitted and "G'1 will be used to 

denote a group (G,») or a topological group (G,•,:)). 

DEFINITION. Let (G,*) and (G1,*) be groups. A mapping of 

G into G' 9 <xy) « *(x)<x(y), V x, y e G, ia called a homomorphism. 

If, in addition, is a 1-1 mapping of G onto G', then « is said to 

be an isomorphism of (G,*) and (G',*)' A homomorphism (isomorphism) 

of a group into (onto) Itself Is called an endomorphism 

(automorphism). 
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DEFINITION. A group with operators is a system (G,*,4>) 3 

(G,*) is a group and 4> is a set of endomorphisms of (G,-)« We will 

also use "G" to denote a group with operators. Two groups G and G' 

with the same set of operators, are said to be isomorphic if 3 

an isomorphism f: G -> G' * V e $ and V a e G, f(<*(a)) - <*(f(a)). 

DEFINITION. Let (G,*,$) be a group with operators. If GQ» 

G ,...,G is a (finite) sequence of subgroups of (G,*) * (1) V * e $, 
1 n 

o((G.) G , Ô Kn, (2) Grt • G, (3) G - {e}, where e is the neutral 
i i 0 n 

element of G, and (4) Ĝ is an invariant subgroup of Ĝ , lsî n, 

then G « G  ̂G >̂ • • • => G « (e> is called a composition series 
0 1 n 

for G. If E and E' are composition series for G * every term of E' 

is a term of E, then E' Is said to be a refinement of E. Two 

composition series are said to be equivalent if 3 a 1-1 correspon­

dence between the quotient groups of the two series 5 corresponding 

quotient groups are isomorphic. 

DEFINITION. A Jordan-Holder series for a group with operators 

(G,»,$) is a composition series G » GQ ̂  G3 Ĝ  « 

{e} ̂  V i e {l,...,n}, G_  ̂is maximal in Ĝ  i.e., if H is an 

invariant subgroup of Ĝ  ̂  •» «*( H) c H, V e $, and 9 if H Ĝ , 

then either H - Ĝ  ̂  or H » Ĝ ,. 
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DEFINITION. Let (X,C7) be a topological space and let R be 

an equivalence relation on X. Then the decomposition X/R of X Into 

equivalence classes together with the topology J1 *> 

{&cl/R| U A e 3} is said to be a quotient space and f Is 
A c yL 

called the quotient topology. 

DEFINITION. A topological group with operators is a system 

(G? (G,*,0) is a topological group and $ is a set of 

endomorphisms of (G,*) 3 V ̂  e is continuous. 

DEFINITION. A topological space is said to be regular if for 

each point x of the space and for each nbd U of x, there is a closed 

nbd V of x such that V c U. A topological space is said to be 

normal if for each pair of disjoint closed sets, A and B, there are 

disjoint open sets U and V such that A c u and B V. 

DEFINITION. There is a well-known finite sequence, T̂ ,,..,T̂ , 

of separation axioms which a topological space (X,3) may satisfy 

(see, for example, Kelley [4]). If (X,J) satisfies the axiom T̂ , 

0$i«4, then (X,J) is said to be a T̂ -space. 

The following theorem is a well-known elementary result in 

the theory of topological groups (see, for example, [6,p.53]). 

THEOREM 1. Let (G,*,J) be a topological group and let x e G. 

Then the mappings L and R of G onto G 9 Vae G, L (a) « 
X X  X  
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xa, Rx(a) = ax, called, respectively, the left and right translations 

by x, are homeomorphisms. 

THEOREM 2. Let (G,*,C7) be a topological group and let e be the 

neutral element of (G,*)» Then U e 0 •> x \j is an open nbd of e, 

V x e U. 

Proof: Let U e 3 and let x e U. Then x_1x = e e x~"hj. And, 

since the left translation by yT̂  is a homeomorphism, by the above 

theorem, x_1U & Therefore, x""1!! is an open nbd of e. j| 

THEOREM 3. If f is an isomorphism of a topological group 

(G, * tJ) onto a topological group (G1,-,̂ ) 3 the inverse of any nbd 

of the neutral element e' of G' is a nbd of the neutral element e of 

G, then f is continuous. 

Proof: Suppose f is not continuous. Then 3 U" e (7* 3 f "̂[U'] 

t 0. Let x e f 1[U'J. Then 9 y e U1 a f(x) » y. By the above 

theorem, ŷ U' is an open nbd of e'. Let z = f~1(y~1). Since f is 

an isomorphism, f 1 fy "̂ U'] - zf 1[U'], which -> z"1f~1[y~1U'] -

—1 -1 —1 
f [U*]. Suppose f~ [y~ U'] e (7. Then, since the left translation 

by z * is a homeomorphism (Theorem 1), f *[U'] e contrary to 

hypothesis. 

Hence, f not continuous •=•> 3 a nbd of e1 3 the inverse of that 

nbd is not a nbd of e. || 
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The following theorem gives a well-known property of the nbds 

of the neutral element in a topological group (see, for example, 

Pontrjagln [6,p.55]>. 

THEOREM 4. If D is a nbd of the neutral element e in a 

topological group (X,»,J), then 3 a nbd V of e * V-1V ̂  U. 

THEOREM 5. A topological group is T whenever it is T . 
— u 

Proof: Let (X,*,(7) be a topological group d (X,3) is a 

T̂ -space. Let x, y e X. Then either 3 a nbd of x to which y does 

not belong or 3 a nbd of y to which x does not belong. For definite-

ness, assume that the latter holds. Then 3 a nbd U of y a x t U. 

By Theorem 2, Uy is a nbd of the neutral element e of X. Then, by 

—1 
the above theorem, 3 a nbd V of e a V V <= W. Since the right 

translations R and K by x and y, respectively, are homeomorphisms, y 

&X[V] « Vx and " Vy are nbds of x and y, respectively. 

Suppose 3 z e X 3 z e VxflVy. Then 3 v, v' e V e z = vx = v'y, 

which »> zx"1, zy-1 e V. Hence, (zx"1)~1(zy~i) - (xz"1)(zy_1) -

x(z *z)y ̂ °xŷ eV'',VclHŷ . However, x t W •»> xy -"̂  i Wy~̂ . 

Hence, Vx ftVy - 0. 

Therefore, (X,',J) is a T2~space. || 

The following theorem is an extension of the concept of a 

quotient group of a group to a group with operators. The proof is 

straightforward (see, for example, Jacobson [3,p.131]). 
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THEOREM 6. Let (G,•,$) be a group with operators and let H 

be an invariant subgroup of G. V * e $ and ¥ a =» aH e G/H, where 

a e a G, define «<(5) » <<(a)H. Then (G/H,*,'!') is a group with 

operators. 

The following four theorems are well-known. For the proofs, 

see Bourbaki [1,pp.85-87]. 

THEOREM 7. (Schreier) If Ê  and E2 are two composition 

series for a group with operators G, then 3 refinements E| and 

Ê  of Ê  and Ê , respectively, a Ê  ana Ê  are equivalent. 

THEOREM 8. (Zassenhaus) Let (G, *,<!>) be a group with operators 

and let H and K be invariant subgroups of G ̂  V e $, <<[H] <=- H and 

c<[K] c- K. Then, if H' and K' are invariant subgroups of H and K, 

respectively, 3 V e $, o<[H'] H' and <K[K'] ̂ -K', the following 

hold: 

(1) H' (HOK') is an invariant subgroup of H'(HOK), 

(2) K'(K/1H') is an invariant subgroup of K'(KOH), 

(3) the quotient groups (H'(HA K))/(H'(HnK')) and 

(K* (K OH))/(K' (K AH')) are isomorphic. 

THEOREM 9. (Jordan-Holder) Any two Jordan-Holder series for 

the same group with operators are equivalent. 

THEOREM 10. Let (G,*,$) be a group with operators and let E 

II 
be a Jordan-Holder series for G. Then if G.j/̂ i+1 is any quotient 
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group of E, Gi/'G-+i is simple, in the sense that if A is any 

invariant subgroup of G /G  ̂̂ [A] c A, V e $, then either A « 
i i+1 

{e}, where e is the neutral element of or A = 

Since a subset G' of a group G "inherits" the property of 

associativity from G, a nonempty subset G' of G is a subgroup of G 

<«> the following hold: 

(1) V a, b e G\ ab e G', 

(2) V a e G\ a"1 e G', 

(3) e e G', where e is the neutral element of G. 

An equivalent condition is given in the following theorem. 

THEOREM 11. A nonempty subset G' of a group G is a subgroup 

of G <•»> Va, b eG', ab^eG'. 

Proof: Let G be a group and let e be the neutral element of 

G. Suppose G* is a subgroup of G. Let a, b e G'. Then, a, b 

e G', which => ab  ̂e G'. 

Suppose that V a, b E  G', ab  ̂E  G*. Let a E  G*. Then aa m 

1 "L -"•I 
e e G'. Hence, ea - a e G. Let a, b £ G'. Then a, b E  G', 

which •> a(b A) •* ab e G'. j j 

THEOREM 12. Let G be a group and let H be a subgroup of G. 

Then HH - ffif1 - H. 
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Proof: Let H be a subgroup of the group G and let e be the 

neutral element of G. Let h e H. Then h = he e EH, And, since 

e-̂ " « e, h = he = he e HH . Hence, K c HH and H c KH . 

Let h' E  HH. Then 3 h , ĥ  e H J  h' ° ilih2* Since H is a 

-1 
group, h , h E  H <=> h h e H. Hence, H ̂  HH. Let h' e HH . Then 

X 2 X 2 

3 ĥ , h2 e H  ̂h' = h  ̂• By the above theorem, ĥ , h2 e H «> 

h , h2-1 e H. Hence, H offl"1. 

Therefore, HH - HH_1 - H. || 

The two statements in the following theorem are elementary 

results which can be found in any of the basic texts on topology 

and algebra, respectively. 

THEOREM 13. If «<: X -> X' and y8: X' -> X", where X, X', and 

X" are topological spaces, are homeomorphisms, then 1 is a 

homeomorphism and the composite oya is a homeomorphism. An analogous 

result holds for Isomorphisms of groups. 

The following is a well-known result of group theory (see, 

for example, Lindstrum [5,p.61]). 

THEOREM 14. Let G be a group. Then the set of all 

automorphisms of G is a group and the set of all inner automorphisms 

of G is an invariant subgroup of this group. 

The following result can be found in Kelley [4,p.47J. 



THEOREM 15. A collection ̂  of subsets of a set X is a base 

for a topology for X <m> X m g and V B, B' e J3 and ¥ x E BOB' 

3 B" E 16 3 X  E  B" c uav. 



II. A JORDAN-HblDER THEOREM FOR TOPOLOGICAL GROUPS 

Let (G,*,$) be a group with operators,0 a topology for G ? 

(G,*is a topological group with operators, and G - GQ 3 

G d ... r> G - {e} and G«H.38,3-OH » {e}, where e is the 
In 0 1 ra 

neutral element of G, be two composition series for (G,•)• Then the 

G., l$L$n, and the H , l«j«m, are topological groups with the 
1 J 

relative topologies and the quotient groups G /G , 0$i<n-l, and 
1 x"rJL 

H /H , G$j$m~l, are topological groups with the quotient topologies 
j 

(see [2,p.71]>. The terras and the quotient groups of the series are 

also groups with operators (with the set of operators $), by 

definition of composition series and Theorem 1.6, 

DEFINITION. We define two composition series to be topologi-

cally equivalent <«> -3 a 1 -1 correspondence between the quotient 

groups of the two series * corresponding quotient groups are 

(1) isomorphic groups with operators and (2) homeomorphic topological 

spaces. 

THEOREM 1. Topologically equivalent composition series are 

equivalent. 

11 
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Proof: This follows immediately from the definition of 

equivalent composition series. || 

Let (G,*,J,$) be a topological group with operators and let 

»« 

£ e (G ) and £ «= (H V . be any two Jordan-Holder series 
1 i 0$i*n 2 j 0#j«n 

for G. 

Since Jordan-Holder series are composition series, we have, by 

Schreier's Theorem (Theorem 1.7) that £' » (G ) and £' » 
1 ij 0«i<n-l 2 

Ô n 

(H ,) where GJjt - (Ĝ aHjĜ  A,, 0«i<$n-l, 0«j«n, and H -
310.1«-1 13 1 3 1+1 3 

Ô l̂ n 

(GJHH )H  ̂Osj«n-l, 0«i$n, are composition series which are 

(equivalent) refinements of £̂  and £̂ , respectively. Furthermore, 

it is clear from the definition that a Jordan-Holder series has 

no proper refinements. Hence, (Ĝ  e E| <•> Ĝ  « £̂ ) and 

E *2 "jl 6 E2»" 

Now, V i, j £ {0,1,... ,n-l}, j+1 ™ 

(Giaii;j)Gi+1/(Gi0H;j4.1)G1+1 is isomorphic to Hj±/Hj ti+i ** 

(G1rtH )̂H;j+1/(Gi+iaHj)H:j+;l (see Theorem 1.8). 

Since the Jordan-Holder Theorem requires only the existence of 

this set of isomorphisms, the mappings are not given explicitly in 
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the usual proof of the theorem. (See, for example, [l,p.37] and 

[3,p.141].) We therefore prove the following lemma. 

LEMMA 2. Let I' =* (G ) and V «= (E ) be the 
1 ij 0«i<n-l 3 0$j«n-l 

0̂  j 0̂ 1 Sr. 

series described above. Then, V i, j e {0,1,...,n-l}, the mapping 

V V°1.J« VW 'v*" "<CiV°W « Gi/Gi.J+l, 

where x e G A H , f (5c) = x(G A H )H is an isomorphism. 
i j ij i+1 j j+1 

Proof: Let i, j s {0,1,... ,n-l} and let f - f̂ . We first 

note that since G f\ H , c. and G. is an invariant subgroup of 
i j+1 i i+1 

<V (Gi™3+x>Gi+x • VfW' L" y e WW Ihen 3 

x c GjflHj ana g±+1 z G1+J ? y - xg1+1- Then y(Gt ft H1+1)G1+1 -

yG1+f°inHj+i) • X8i+iGi+x(GiaHl+i)- But> °1+X a 8roup *Dd 

"l+x 6 Gi+X " 81+X Gi+x " G1+X- So- y(Gi"H3+X)Gi+X " 

'WWx' * *<Ciri"j+X>Gi+X' Ho"c,i' ¥ 7 c (GinEJ)Gl+X-

i X z which -> G1J/Gi>j+1 

is the domain of f. 

Let z - z(G±+1̂  Hj)Hj+1 e Hji/Hj j+1* 111611 3 Ĝ̂ Hj and 

hj+i 5 Hj+1 * Z " Xhj+1» Whlch "" 5 " xhj+l(Gi+iaHj)Hj+l' SlnCS 
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G AH cH end H is an invariant subgroup of H , ... OH.) * 
i+1 j j j+1 J 1+1 J 

Vi" V(Gwn V' H"ce-5 - xViVi<Gi+inaj)- An°' ei"ce 

HJ+1 ie a group, l>J+1Bj+1 * "i+1' "hlCh "* * " xH3+l<G±+in HJ5 " 

x(Gi+l̂ Hj)Hj+l " f(S)' Where * " x(GinHj+l)Gi+l* Therefore> f is 

a mapping of Ĝ Â  j+1 onto 

Let ix - *L (̂ Ĥ , S2 - t 8y/G1 j+1, 

where  ̂e < 0̂̂ , -* f̂ ) » fĈ ). Then x1(G1+î HJ>Hj+i " 

x (G f\U )H . Since (1) H is an invariant subgroup of £ , 
2 iH-1 j j+1 J+I J 

(2) x2 e G±r\H Ĥjt and (3) Ĝ A ̂  c. Hj, we have that 

xl(Gl+lAVVl • x2<Gi+inVVl <-> xl(Gi«n V " x2(Gl«nV' 

Since Gi+1H  ̂Gi-fl and x̂  x2 e Ĝ  which is the group 

of which G is an invariant subgroup, - X2̂ Gi+î *V 

<-> x « x . Hence, x » x . Therefore, f is 1-1. 
12 12 

Let i1 - 52 * »2<GinH3+l)Gl+l ' GU/G1,J+1' 

Then, by definition of multiplication of cosets, x̂  -

XXX2<GlAH3+l>Gi+l' A°d' f(il)f(x2) ' <Xl(Gl+lftH3>HJ+l>" 

(x2(Gi+I° V V • hWl" W " There£o"- f 

"preserves" the group operation. 
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Finally, V i, j e {0,3,... ,n-l} and V 9, («*(*>> -

«(X)(G1+In Hj)Hj+i - V X c 

Therefore, V i, j e {0,1,...,n-l}, f is an isomorphism. 

THEOREM 3. Let (G,*,0,$) be a topological group. Then any 

two Jordan-Holder series for G are topologically equivalent. 

Proof: Let I = (G ) and I - (H ) be any two Jordan-
0«i$n Ô ĵ n 

Holder series for G and let and Ẑ  be the (equivalent) refinements 

of E and respectively, described in the discussion preceding 

Lemma 2, above. Clearly, we need only show that the mappings f 

defined in Lemma 2 are homeomorphisms. 
-1 

Let i, j e {0,1 n-1} and let f - f̂ . Then f : j+1 

-> ' v s - £ W+i* "here 11 e <GinV' 

- XG1>J+1. 

Let UCĤ  ̂/Hj j+1 be a nbd of the neutral element in Hj .j/11 j ̂ 1+1, 

Then, by definition of nbd in the quotient space,3 U'CG 'U' is a 

nbd of the neutral element e of G and a U « (U1 AB̂ )̂  By the 

definition of I', the fact that H is an invariant subgroup of H 
2 j"**-*- J 

which contains G A H , the distributive property of intersections, 
i+1 J 
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and the feet that Hj+1«j+1 " Hj+i since Hj+1 iS 8 gr°Up'  ̂

° " <D'A Vi.̂ l 

- <",A<°lAVV)tGi«rvVV 

- (u'n(Gl(\Yyvi<ci«AV 

" <D'HJ+l<GlAH3)B3+lHi+l) (Gi«A V 

- <»'v"(GinBiV(5wnV 

And, £_1tU] " f"1[(D,f\<G1(\Hj))Bj l+1] - (U' A (G± (\HJ))G1J+1 

« (U'lG )G± J+1 (as Is apparent by analogy with the foregoing), 

which is a nbd of the neutral element in Gy/G1>1+1* '"'arefore, f 

is continuous (see Theorem 1.3)a 

The proof that f1 is continuous is entirely analogous to the 

proof that f is continuous. Hence, f is a homeomorphism of 

VGi,J+l °nt° VW" 

Therefore, » i, i a (0,1,...,n-l), f is a homeomorphism. || 



III. TOPOLOGICAL GROUP GENERATED BY AN INVARIANT SUBGROUP 

THEOREM 1. Let (G,*) be any group and let (H,») be any 

invariant subgroup of (G,*)• Let T » {aH|a e G} and let 

{ ̂  AIT' c T>. Then (G»*» ) 18 a topological group. 
A e T* ' 

Proof: Clearly, the union of the members of any subfamily 

of 3 is a member of 3 and G - since an? two distinct 

members of T are disjoint, Â  A2 e J -> either Â A2 - 0 or A1 

and A are unions of members of J and Â  A2 is a member of T or a 
2 

union of members of T. Hence, Ay A2 e 0 -> A2 e 0. Thus, 3 is 

a topology for G. 

Let x, y c G and let W be a nbd of xy in (G,C7). Then xH 

and yH are nbds of x and y, respectively. And, i W c 3 * W W 

-1 
and xy-1 e W. By definition of 1 > any member of Cf containing xy 

must contain the unique member xy-1H of T of which xy 1 is a member. 

Hence, xy_1H cw, But, xy-1H - xHy""1 - xHHy 1 - xHH 1y 1 » 

(xHXyH)""1, by Theorem 1.12. 

Therefore, (G,*,f) is a topological group. || 

DEFINITION. The topology 0 described in the above theorem 

will be called the topology generated by the invariant subgroup__H 

of G. 

17 
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THEOREM 2. Let <G,-,J) be a topological group. Then ia the 

topology generated by some invariant subgroup H of G <-> V T t J 3 T 

0 0, 3 W e 3 * w + 0, WCT, and no nonempty member of 5 is a proper 

subset of W. 

froof! if J is the topology generated by an invariant subgroup 

H of G, then V T t J a 1 0 0, 3 a t G a aHcT. Clearly, aH e 3, aH 

+ 0, and no nonempty member of J is a proper subset of aH. 

Conversely, suppose that V T c J a T 0 0, 3 W s J a W 0 0, 

W = T. and no nonempty member of 3is a proper subset of W. Let 

V- {H e J|W 0 0 and 0 T t 3 <> T 0 0 and T is a proper subset of W) 

and let e be the neutral element of G. 

We will first show that 3 a unique member W' of Vb e e W\ 

Let W e V and let x e W. Then W e J, which »> x is a nbd of 

(see Theorem 1.2), which -> 3 V c 3a e s V and V c a"1*. Let 

w, Since the left translation by * is a homeomorphism 

(see Theorem 1.1) and W c V, xV t Since W c V c x" W, 

xW. c w. Hence, by definition of H x«' - H, which -> W - ."V 

IT« C,MNN,E 5 W" e V?e e W". Then W'NW" E ̂  and 
which «> e c W . Suppose d w e 

{e} c w'HW" cW'. Hence by definition of V, W 0 W W Similar y, 

since W'fi WOW" - W". Hence, 3 a unique member W of V 3 

e e W'. 

Since W is a nbd of e. 3 a nbo V of e a W_ - ĥ (see  ̂

Theorem I.A). Hence. 3be (7 a e e U = V, which -> UU*1 - W 

Eut, e c H_1 "> H c 0D"1- Se[iCe' since W' e V, U - W , which *> 

U a UU 1 • W'. So, w » w e W »> w , w e U, which »> 
12 * 
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w w"1 e UU-1 = W. Therefore, W is a subgroup of G (see Theorem 
1 2 

I.11). 

Let x e G. Since the left and right translations by x are 

homeomorphisms, xW, Wx e 3. Hence, 3 W eVs W CXW. Since the 

left translation by x-1 is a homeomorphism, x Hj e 3. And, W c. xW 

—> c W , which x Hf *• W*, which •=> W 13 xW . Hence, xW e 

Similarly, W'x eV. Since e e W => x e xK'AW'x and since xWAW'x 

c xW and xtf'A W'x c W'x, we have that xW «* xW'AW'x = Wx. There­

fore, W is an invariant subgroup of G. 

Let H - W. Let T e J ? T + 0 and let x' e T. Since H c. G 

and e s H, G = U _xH. Then T (\ x'H + 0, TAx'H c x'H, and 
X £ V J 

TAx'H e 3. Hence, by definition of IV", TAx'H • x H, which =•> 

T P x'H. Hence, T -  ̂xH, Therefore, T e 3 <»> T - 0 or T » 
x e I 

U TXH. x e r 

Therefore, 3 is the topology generated by the invariant 

subgroup H of G. J| 

COROLLARY 3. IF (G,*,J) is a topological group, then 3 is the 

topology generated by the invariant subgroup H of G <=> H e 3 and no 

nonempty member of J is a proper subset of H. Furthermore, if 3 is 

generated by H and if W c 3 *W i 0, no nonempty member of 3 

is a proper subset of W, and e e W , then W H. 

Proof; This follows at once from the definition of a topology 

generated by an invariant subgroup and the proof of the above 

theorem. |1 
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COROLLARY 4. Let (G.'.J) be a topological group. If 0 is 

discrete or if 7 is finite, then 7 is the topology generated by an 

invariant subgroup H of G. 

Proof, if 7 is discrete, then the subgroup of G consisting of 

the neutral element e o£ G la a member of 0 and properly contains no 

nonempty member of 0.Hence, by Corollary 3, above. ? Is the 

topology generated by {e}. 

Suppose 7 is finite, containing, say, precisely n sets. 

Suppose 3 T e 7 ? T * 0 and 5 V W e 7 ? W i 0 and W c T, 3 a non­

empty member W of J 3 W' is a proper subset of W. 

Since 7 is finite, 3 m c N 3 m$n and 9 3 only m distinct open 

subsets of T. But, by our hypothesis, each of the subsets contains 

as a proper subset some member of T. We conclude that 1 finite 

=> V T c J 5 T + 0, 3 W e 7 9 W + 0, W c T, and no nonempty member 

of 7 is a proper subset of W. 

Therefore, 7 is the topology generated by an invariant sub­

group H of G. || 

Theorem 5. Let (G,*,5) be a topological group 9 7 is the 

topology generated by the invariant subgroup H of G. If G/H is 

finite, containing, say, precisely n distinct elements, then 3 

precisely 2° distinct elements in 7. 

Proof, Suppose G/H is finite. Then 3 a 1-1 correspondence 

between members of 7 and subsets of G/H. Hence, if 3 precisely n 

distinct elements in G/H, 3 precisely 2° distinct sets in J. || 
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LEMMA 6. Let (G,*,7) be a topological group 3 {e} e 7, where 

e is the neutral element of G. Then 7 is the discrete topology for G. 

Proof: By Theorem 1.1, V a e G, L is a homeomorphism. Hence, 
" a 

if {e} e 7, then V a e G, L [{e}] • {a> e 
a 

Therefore, {e} e 7" •> 7 discrete. || 

THEOREM 7, Let (G,*,7,4>) be a topological group with operators 

3 3 is the topology generated by an invariant subgroup H of G. If 

o<[H] c H, V * e f(as will be the case if $ - 0, for example), then 

all quotient groups of Jordan-Holder series for G are either discrete 

or indiscrete with the quotient topology. Specifically, if G * 

G  ̂G  ̂ 3 G - {e}, where e is the neutral element of G, is a 
0 1 n 

Jordan-Holder series for G, then, for 0«i«n-l, the quotient topology 

7G,/G ,̂ £or VG1+1 18 dlscrete <_> H A Gic G1+1-
1 lTi 

Proof: Let (G,*,7,$) be a topological group 3 7is the 

topology generated by H, where H is an invariant subgroup of G 3 

<*[H] c H, V o< e $. Let G « G„ G 3 ... O G « {e} be any Jordan-
0 1 n 

Holder series for G and let G./G be one of the quotient groups of 
1 1+1 

this series. 

We first wish to show that any subset A of Gj/Ĝ  9 ® " 

_ U  a u H n G  a n d  3  V  1  e  A ,  a  f )  ( H  f \ G  )  0  0  i s  a n  i n v a r i a n t  s u b g r o u p  
a e A i i 

of G./G 9 <x[A) c A, V e • . 
i i+1 
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Clearly, such a subset A la not empty, since e e HAĜ  

e e A. Let a , a2 e A. Then, by definition of A, 3 ax e a2 

e a * a , a e HAG.. Since H and G are subgroups of G, alt a2 
2 X 2  X  

£  B A G  »> a , a"1 c HAG » whi ch -> A.A,1 ® HAG . Hence, by 
i 1 2 i *• A 

Theorem I.11, H is a subgroup of Gi/®1+1» 

Since H is an invariant subgroup of G and is an invariant 

subgroup of itself, we have that, V g e G ,̂ g(HAĜ ) *» gHAgG  ̂

Hg AG±g - (HnG±)g. Thus, H AĜ  is invariant. 

Let g e Ĝ Ĝ , Then g ̂ G±. Let x e gA. Then 3 a e A a x » 

ga. But, a s A => 3 aeâ ae HAG±. Let g e g. Then ga e 

gCHAĜ ) « (HAG )̂g, which »> 3 a' « BAĜ  ga » a'g. And, 

BHG^ A -> a' e A. Hence, since unequal cosets are distinct, x -

ga - a'g e Ag, which -> gA ̂  Ag. The proof that gA ̂  Ag is, clearly, 

entirely analogous to the foregoing. Therefore, A is an invariant 

subgroup of G. 

By an assumption concerning H and by definition of Jordan-

Holder series, *[H] ̂  H and rf[G±]  ̂Glf V c* e •. Let x e <=/[H AG±]. 

Then 3 h c H and g e G -? x ™ <x(h) - «(g), which «> x e HAG . 
i 

Hence, V c\e», c<[Ht\G ] c «[ H]. Let « e * and a e A 9 a e HnG±. 

Then *<a) - °«*Gi+1) - «<*>Gi+1 c G1+1 C Gi* SinCe H ±B invariant 

and a E H, aG  ̂H, which »> *(a) c H. So, <=<(a) c. HAĜ  V a e A. 
i*rX 
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Therefore, H << e $, <v[A3 c. A. 

But, G /G is simple (see Theorem I.10). Hence, A «= Gi/G1+1 
i i+1 

or A - (eh Since H A G _l c. Ĝ , it is clear that such a set A exists. 

Suppose A - (e), then, by definition of A, e • Gi+j. ̂  HnGi' There~ 

fore, there exists only one such set A. 

Suppose A - (e). Then 8'ê HdĜ ĉ . Let x e e. Then 

x e G and x e xH A G . Let y e xHAG . Then 3 h e HAG a y - xh. 
i i l 

And, h e HAĜ  •> h £ e, which »> y » xh e e since e - Gi+1 is a 

group. Hence, xH A G^ c e. Thus, (2 - e - _(xH AG^) -

( U-XH)HG. C 3R . Therefore, {e} e /Q and we have by the 
x e e 1  ̂ i i+1 

above lemma that 3 . is discrete. 
VGi+i 

Suppose A - ei/G1+1. letB£/G/(; 3 B + 0. Then the set 
i i+1 

• _ LJ b e (T and 3 a subset D of G a (̂ Ŵ dH) AĜ. Let d' 
e 'i 

e D. Let xeB *3bex=»be d'H A Ĝ . Let y e G.j/G£+l' Then 

3 z e G /G  ̂yz "* X (since is a group). Let z e z  ̂z 

e H AĜ  (such a z exists since A « Gj/Gj+î * Then ̂ yeŷ yẑ b, 

which => y - bz"1. Since z e H A G± -> z"1 e H AG± (since H AG± is a 

group), we have that y « bz_1e(dH n Ĝ  (H AĜ  ** dH A Gi <= VS. Hence, 

y (\t> </• 0, which »> y e B. Thus, B » Gj/Gi4i* Therefore, /Ĝ +1 
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is indiscrete. 

This completes the proof of the theorem. 

By the Jordan-Holder Theorem, if (G,*,$) and (G',*,4>) are 

groups with operators ? 3 non-equivalent Jordan-Holder series Z and 

I' for G and G', respectively, then G and G' are not isomorphic. 

Let (G.'.CVi>) and ( G ' , J '  ,4>) be topological groups with 

operators ? G and G' are isomorphic. Then, by Theorem II.3, if 

3 Jordan-Holder series Z and I' for G and G', respectively, 9 Z and 

Z' are not topologically equivalent, (G,C7) and (G,J') are not 

homeomorphic topological spaces. A partial converse also holds, as 

follows: 

THEOREM 8. Let (G,-,J,4>) and (G',*,J' ,$) be topological groups 

with operators s J and T are the topologies generated by the 

invariant subgroups H and J' of G and G', respectively, 3 G and G 

are isomorphic. Suppose, further, that V e $, <*[H] <=- H and 

a[J'] C J*. Then, if 3 Jordan-Holder series Z and Z' for G and G*, 

respectively, 3 Z and Z' are topologically equivalent, (G,0) and (G,J') 

are homeomorphic topological spaces. Specifically, two finite groups 

with the null set of operators which are isomorphic are abstractly 

identical <*=> a Jordan-Holder series for one is topologically 

equivalent to a Jordan-Holder series for the other. 

Proof: Let (G,*,:7,$) and (G',',7',̂ ) be the topological groups 

described in the theorem. Clearly, if 3 topologically equivalent 

Jordan-Holder series Z and Z' for G and G', respectively, then 

any Jordan-Holder series for G is topologically equivalent to 



25 

any Jordan-Holder series for G*. 

Let f be an isomorphism of the group G onto the group G' and, 

V a e G, denote f(a) by a*. Then, changing the notation of G', if 

necessary, we can write a' • a, V a e G. 

Since H is an invariant subgroup of G 3 x[H] c H, ¥ « e i, 3 

a Jordan-Holder series I - (Gi)o*;i«n for G 5 H " Gk for some 

k c {O*1 n}« Then V = (f[Gi3)0«i« " <GPo«i«n 18 3 Jordan~ 

Holder series for G' ̂  Ĝ  Ĝ , V i e {0,l,...,n} and, specifically, 

H - H' - Ĝ « 

Since Z and Ef are topologically equivalent, by hypothesis, we 

have (see Lemma II.2 and Theorem II.3), V j e {0,1,...,n}, the 

quotient space Ĝ  • (Gjft GpGj+i/*Gj0 GpGj+l " GjGj+PGj+lGj+l " 

G /G is isomorphic and homeoraorphic to the quotient space 
j j+1 

,3 * <G3 G GJ)Wn G?°j+l _ #?Wi+l _ 0j/V 

V j e {l,...,k}, G is a subgroup of G 5 H <̂ G . Let j 

e {1,...,k} and let e be the neutral element of Gj_1/Gj* Then ® = 

G - U xH, which «>  ̂_{a> is open in (G,J), which »> e is 
j x e Ĝ  a e e 

open In G /G , which *» (see Lemma 6) Gj_j/Gj is discrete, which 
•5 <3 

-> V i e {l,...,k}, Ĉ J/GJ is discrete. 

Specifically, then, G'/G{ is discrete, which «> Gj e Jx . And, 

G'/G' discrete •»> G' open in G', which •> 3 U' e f ̂  U f\ Ĝ  ® G ,̂ 
12 ' 

which «> Ĝ  e T • Similarly, it can be shown that Ĝ , G3>"**'(\ E 3* * 
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Ilence, G' «= K' c J1, which =»> H « H' ̂  Jf. 

Since f is an isomorphism of G onto G1, f is an isomorphism 

of G* onto G. Hence, we can show in an analogous manner that J • 

f̂ P'] » J' o H « H\ 

Therefore, J' = H* and we have that 3 and J' are homeoraorphic. 

Specifically, if G and G' are finite and $ « 0, we have by 

Corollary 4 that the above result holds. || 



IV. MAPPINGS OF A TOPOLOGICAL GROUP ONTO ITSELF 

DEFINITION. We define an auteomorphism as a hotneomorphism of 

a topological space onto itself. 

DEFINITION. Let (G,*,3) be a topological group. We define 

an autoauteomorphism of (G,*,4) onto itself as an auteomorphism of 

(G,̂ ) which is also an automorphism of (G,-)» i.e., an auteomorphism 

* of (G,̂ ) 3 V x, y s G, <x(xy) - <*(x)«(y). 

THEOREM 1. The set ft of all auteomorphisms of a topological 

group (G,«,5) forms a group (ft,*) under composition of functions. 

The set ft* of all autoauteomorphisms of (G,*,J) forms a subgroup 

(&' ,•) of this group. 

Proof: If <x,/3 e ft, then (see Theorem 1.13) £Â 3,<x e ft. And, 

the identity mapping  ̂of G onto itself is an auteomorphism of G. 

Hence, (see Theorem I.11) (ft,*) is a subgroup of the group of 1-1 

mappings of G onto itself and, therefore, a group. 

By definition, ft' c ®. Hence, if <x,/3 e ft*, then e&. 

Since (see Theorem 1.13) the composite of two isomorphisms is an 

isomorphism and the inverse of an isomorphism is an isomorphism, we 

have, then, that <x,/3 e ft' -> * 1 e • Clearly, u e ft'. Hence, 

27 
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(see Theorem 1.11) (fiL* ,*) Is a subgroup of the group of 1-1 mappings 

of G onto G and, therefore, a subgroup of (®»*). |j 

THEOREM 2. Let (G.'.D) be a topological group. Then the 

set of all inner automorphisms of (G»•) forms an invariant sub­

group (#, *) the group (ft.',*) of autoauteomorphisms of (G,*). 

Proof; Let eThen, by definition of inner automorphism, 

1 —X 
3  a  e  G  V x e G ,  o < ( x )  -  a - x - a "  .  B u t ,  a » x * a  -  L f i '  R f l _ i ( x ) ,  

where L and R i a re, respectively, the left translation by a and 
a a x 

the right translation by a-1. Hence, is a composite of homeo-

morphisms (Theorem 1.1) and, therefore, a homeomorphism. Therefore, 

since inner automorphisms are automorphisms (Theorem 1.14), $ c- . 

And, fit' is, by definition, a subset of the set of ail auto­

morphisms of G. Finally (see Theorem 1.14), (̂ , •) is an invariant 

subgroup of the set of all automorphisms of G. Hence, (.£,•) is an 

invariant subgroup of (&',•). j| 

THEOREM 3. Let (G,*be any topological group and let 

(ft,*) be the group of auteomorphisms of (G,0)» V U »̂ c 7̂, 

define the set By y = e $L|<*[Û J m 2̂̂ * bet 2N denote the set 
1, 2 

of all even positive integers. Let fe be the family of subsets of & 

defined as follows; B e te <«> 3 a finite sequence U1# U2,...,Un> 

n e 2N, of members of C7 ? B a By  ̂0  ̂0 ... f\B̂  y. 
1, 2 3, 4 n-1, n 

Then ft is a base for a topology for ft 9 ((£, *,̂ ) is a topological 

group. 



Proof: V Ur U2 e 0> \ >XJ c ® a"d * e ft a> Eu,4U] E *» 
X 2 

» » « / .  H «c . .  a - O i i 0 2 V j \ , D 2 -

Clearly, the intersection of two members of fe is a member of 

ft. Hence, (see Theorem 1.15) ft is a base for a topology for 

Let <* , o< c Let W be any nbd of <* • <* . Then, by 
12 1 * 

-1 
definition of a base for a topology (see p.2), 3 B e ft 3 £ 

B c W. Then 3 n e 2N and U , U , ...,U ("IB u ̂  " 
12 » 1' 2 3 4 

n B o  ,  i f  
ro-1 m 

Let i e 2H îfn. Then * Ui °2̂ *2 ̂ Ui-1̂  

ui-r HK,ce- Bi" ,u2n V2i[u3i n • • *n Viv.i-u„ 

nbd °f -1 a"d B2 • ,̂ 1t"1I.«'in,-̂ Ws] 

is 

is a nbd of <x0. 

a"1 - {«E 4|OT1[O(21ID1] - u1, «"1t«j1[u3l] -

d3 ""ĥ hVi11" VJ? 

- {*E a|o<tUxl -"j1'"!1' "'V " <X21IU3l"">alUIIl..lI " 

«21[U' 

Let & e Then 3 ̂  e fs B2 Let 

i e 2N 3 i«m. Then ̂ [D̂ ] - « ̂Ui-1̂  2*Ui-l̂  " Ui? which 
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-1 

"> ̂ Ui 1̂  = Ui'' which "* B' Hence> B!'B2 C B* 

Therefore, (8,',5e) is a topological group. || 

COROLLARY 4. Let "U.̂  be the nbd system of u in ($, *, 1̂ ). 

Then U e Uw <-> 3 B e f> 3 B = B„ IT H B 0 ... D B , where p  u.,u, u„,u_ u ,u 
11 2 2 n n 

U U e 3, 3 B C u. 
1 XX 

Proof: Let U e 7/̂ . Then e U, which «>3Befc9ieB̂ U. 

,u f°r 

m 
And, B e fc -> 3 m e 2N 9 B - B 0 B D.-HB 

1 *  2  3 * 4  m - 1  

U ,U9,...U c 3. Suppose 3 i e 2K 3 i«ra and 9 U + U. Then 
1 Z JJJ 1""A 

u [U. ̂  Is [̂UJ, which -> L i B, contrary to hypothesis. 

Suppose U 0 & -5 3 B e j8 with the given properties. Then 

l e B c. u, which -> U e Kfe. | | 

THEOREM 3. Let (G,*,J) be a topological group 9 3 is the 

topology generated by the invariant subgroup H of G. Let ($,") 

be the topological group of auteomorphisms of (G,̂ ) described in 

Theorem 3 above. Then the following are equivalent: 

(1) 3 is finite. 

(2) 3<& is the topology generated by an invariant subgroup 

(A,-) of (fi.,0. 

(3) is compact. 

Specifically, if ̂  is generated by an invariant subgroup 

(A,-) of O.-), then A - aH9o/HBaH,aH-
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Proof: (1) =»> (2). This is an immediate consequence of 

Corollary III.A. 

(2) ®> (1). Suppoes that 3 is not finite. Let T z * T + 0. 

Let W s 0^ 3 W C T and W 0 0. Let <*s W. Then 3 Û , e 3, 

for n £ 2N, 3 * e B - B y OBy  ̂D ... 0By ^ c. W. Since 3 is 
1* 2 3* 4 n-l' n 

infinite, 3 e 3 ? i  ̂ 2̂*̂ 4* * * * *̂ n̂  * 

and B #0. Then B' « BUB 0 0. Hence, B' e B' + 
Uj'Uk V k 

0, B' C. W, and B* 0 W. Therefore, by Theorem XII.2, 3̂  is not the 

topology generated by an invariant subgroup of (<2, *). 

(1) »> (3). Suppose 3 is finite. Let U - (Ui)± £ j, for some 

index set I, be any convering of ft. by nonempty members of 3%. Then, 

V i e I, 3 an index set J. and a family B » (B ), T of members 
I 1 *| J E 

of US 5U, » . Let B = I J» Then B is a covering 

of ft . 

Suppose 3 precisely n distinct sets in J. Then 3 precisely 

2 
n-1 distinct nonempty sets in 3 and 3 m e N ̂  m̂ (n-l) 3 3 precisely 

m distinct members of )0 of the form B̂   ̂, for Û , e >7. And, in 
1 2 

a manner entirely analogous to that used in Theorem III.5, it can 

be shown that 3 precisely 2m-l distinct sets in ft, which -> V3 is 

finite. Hence, by omitting, if necessary, any repetitions of sets 

in B, we can obtain a finite subcovering B' » (B ) of B, where 
k k e K 

K c U |i E I,j E J }» Then the family U' -
J 1 
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covers fit. Therefore, 1 ̂ is compact. 

(3) -> (1). Suppose 1ft is compact. Let B = B̂H>uiU 6 

Since H e 5, Btj tt e fc V U e C7, and o<[E] e V̂ efi.. Hence, 
HjU 

B is an open covering of (2. Thus, since 1̂  is compact, 3 a finite 
/ 

subfamily B' of B which covers S.. Then 3 n e N 9 B' contains pre­

cisely n members. Let a £ G. Let « be the mapping of G onto G 

3 <*(x) »x,VxeG9x̂ H and x t aBj, <<(x) = ax, - 9 x e H» and 

c<(x) » a""1*, V x e aH. Then, clearly, e A 3 <*[E] = an, which 

•*> e B <=> U » aH. Therefore, B e B', V a c G. Hence, 
H,U H»aH 

3 m e N * m«n and 9 3 precisely m distinct members of G/H, which => (by 

Theorem 111.5) precisely "T distinct members of 1. Therefore, 1 is 

finite. 

Finally, suppose that is generated by an invariant subgroup 

of OS,-). Ut A - Clearly- A * * a°d A 6 B C 

Suppose 3 T e 1 ? T 0 0 and T is a proper subset of A. T e 3 -> 3 

. 3. for B0i>d A B̂ n 

Let * e A. Let i e 2N ? î n. If - 0, then 

B c £ «>/3[Ui_1] - Ui_1, V (5 e B, which -> U± - Û . If U±_1 0 

0, then a H, a H a H e G/H 5 U - a H V a H U ...Uâ H. And, 
1 / ®  ̂A 

B c A »>, V ̂ eB, /3[Ui_1l U ... U â H] -/Jlâ H] U ... 

- a H V.,. Ua H - U . Hence, V i e 2N 9 isn, U - U . Since 
1 m i-1 1 x x 
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e A, <*[U j * > U .Vie {0,1,... ,n}, which •> << e B. Hence, 
i-1 i-1 

B » A, which »> T =* A, contrary to hypothesis. 

Therefore, by Corollary III.3, (A,*) is the invariant subgroup 

of (&,*) which generates 3%. |j 

THEOREM 6, Let (G,',5) be a topological group and let 

(£»*>1$) be the topological group of auteomorphisms of (G/7) 

described in Theorem 3, above. Then the following hold: 

(1) 3̂  is discrete <=> G is finite and 3 is discrete, 

(2) 3̂ is indiscrete <=> 3 is indiscrete, 

(3) is a T̂ -space (0si«3) <•»> (G,5) is a T̂ space. 

Proof: Suppose G is finite, say G • { a ,.,.,8̂ }, and 3 is 

discrete. Then {o} = Br  ̂. n...HB r e 3*. Hence, by 
(a,},{a } {a },{a } ® 
11 n n 

Lemma III.6, 3̂  is discrete. Conversely, suppose G is finite, but 

3 is not discrete. Then 3 U e 3 3 U contains more than one element, 

say U = {a ,...,a }, and since G is finite, we can choose U 9 U 
1 n 

properly contains no nonempty member of 3, Let B = B (1 ... f\ 
V 1 

B e B 3 te B and } 3 k e {l,...n> 9 U = U . Define the mapping 
U ,U R 
n n 

f> 9 ̂ j(x) = L-(x), V x e G 9 X i Uk, ° ai+1 for ai e U, l«L$n, 

and ̂ (a ) = a . Clearly, B. Hence, {L} i 3%, which »> is 

not discrete. Therefore, (1) holds. 
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Suppose 0 is indiscrete. Then )6 •= {B̂  G#E0 0̂  53 £®»0}> which 

»=> (J is indiscrete. Conversely, if 3 is not indiscrete, then 
O 

3 U e 1 3 U 0 0 and U i G. Hence, V u s U, u~ U is a nbd of the 

neutral element e of G which is neither empty nor G. (Note that if 

u~̂ U = G, then G = uG • U.) Let x e G ? x  ̂u U. Then L̂  e 

B i -1 which *»> B _lrT -1„ i 0- Since c, is not a member of 
u~-LU,xu U* w,,xc" u U,xu AU 

this set, it is a member of and. hence, of which is not 0 and 

not®.. Thus, C/g is not indiscrete. Therefore, (2) holds. 

By Theorem X.5, a topological group is a T -̂space whenever it 

is a TQ-space. Suppose (G,J) is a T̂ space. Let £ ft 3 <*0/3. 

Then 3x £ G 9 *<(x) 0/5(x), which -> 3 nbds û x) and D̂ (x) of 

and ̂ (x), respectively, 3 **/3(x) = *̂ And, for convenience, 

we can assume that these nbds are open. Since <* and ̂  are 

auteomorphisms, and (̂x) &re °̂ en n̂ ds x" whi£h => 

the set A » fT̂ U Hp ̂ U, . is an open nbd of x. Hence, ̂[A] and 
(x) / (x) 

[̂AJ are open. And, ̂ [A] , ̂s[A] c: ̂  ̂  a> = 

»hl<:h " "A./IÂ AylAl " "• ClMrly' BA,4AJ ̂  \f [A] "" OI,en 

nbds of <A and̂  , respectively. Hence, (d,̂ ) is a -space. 

Conversely, suppose (G,̂ f) is not a T̂ -space. Then it is not 

a TQ-space. Hence,3 x, y £ G*x 0 y and ̂  every nbd of x is a nbd 

of y and every nbd of y is a nbd of x. 

Define the mapping of G onto G ̂  X(a) *» u( a) = a, V a e G 
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a a ̂  x and a ̂  y, »<(x) = y? and 4(y) = x. Let U z 'J. Since (G,/) 

is Tg, x £ U <=> y e U. And, *(a) »a, VaeU-Jâ x and a # y. 

Hence, *"[U3 » U. Let T e 3u. Then <* e T <=»> 3 U ,... ,TJ e / a 
» In 

B (] B fl ... (IB c-̂ » which, by Corollary 4, holds if and 
D,.U U ,U U U 
11 2 2 n n 

only if c e T. Hence, (<3,̂ g) is not T . 

Let B' " B () ...flB efc. V 1 e fl.,3,... ,n-l>, let 
n " ,«•'iJ• 1 2 n-1 n 

F « {V e C7| V ̂  U }and 9 3 otsRa ̂[Ul = V. Then B 
11 1 Ui'Ui+l 

U B «= KB , which is an intersection of closed sets 
e F U -V V e F/ U,V' 

i i i i 

and, therefore, closed. Hence, B', itself an intersection of closed 

sets, is closed. Therefore, B is closed. V B eV3. 

Let c< E (3. and let He 7̂ 9 <* e U. Then il b B̂ U, And, 

by the foregoing, B is closed. Hence, Tjg is regular. 



LIST OF REFERENCES 

1. N. Bourbaki, Algebra, Chapter 1, 2nd ed., Hermann, Paris, 1960. 

2. * Topologie Generale, Chapter 3, 3rd ed., Hermann, 

Paris, 1960. 

3. N. Jacobson, Lectures in Abstract Algebra, Van Nostrand, New York, 

1951. 

4. J. L. Kelley, General Topology, Van Nostrand, New York, 1955. 

5. A. 0. Lindstrum, Abstract Algebra, Holden-Day, San Francisco, 1967. 

6. L. Pontrjagin, Topological Groups, Princeton Univ., Princeton, 

». J., 1939. 

36 


	Some aspects of topological groups
	Recommended Citation

	MT_HakeemFC_0012

