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PREFACE 

In studying the various topology books and other 

literature concerning Hilbert Space, It is quite apparent 

that topologically, it is closely related to Euclidean 
/ 

n-space. Both are metric spaces and although Hllbert Space 

is not the product of the real line E1 , taken infinitely 

many times, its points are defined by infinite sequences of 

real numbers. Hence, we have that Hilbert Space like 

Euclidean n-space is also a vector space. Topologically, 

these two spaces differ in that Hilbert Space is not 

locally compact, whereas Euclidean n-space is locally com­

pact. In a later theorem, It will be shown that one can 

always embed Euclidean n-space In Hilbert Space by an 

Isometry. The purpose then, of this thesis, Is to develop 

the topological properties of Hilbert Space. 

Hllbert Space obtained Its name from the famous 

German mathematician D. Hilbert (1862-1943). In his works 

on the theory of integral equations, Hllbert considered 

some specific spaces composed of sequences (lg) and of 

functions, which were later used as models for the con­

struction of the general theory of spaces called by his 

name. 

In 1928, Frechet raised the general question as to 

which linear topological spaces were homeomorphlc to each 

vi 



other. Specifically, he asked whether Hilbert Space was 

00 

homeomorphic to S , where S « TT I? , where for each 
i«l 1 

i > 0 , 1° denotes the open interval (0,1) , In 1932, 

Banach stated that Mazur had shown that S was not homeo­

morphic to Hilbert Space. Subsequently it was understood 

that the question was still open. Between 1932 and 1966, 

there have been many people working to solve this problem, 

with notable contributions from Kadee, Bessaga, and 

Pelczynski. However, the topological classification of 

separable infinite-dimensional Frechet Spaces was recently 

completed, when R. D. Anderson, using some important re­

sults of Kadec, Bessaga, and Petczynski, has shown that 

Hilbert Space is homeomorphic to S. Hence, all such spaces 

are homeomorphic to each other. For a more complete and 

detailed description of this problem and its very important 

proof, see Anderson's article, "Hilbert Space is homeo­

morphic to the countable Infinite Product of Lines," in 

the Bulletin of the American Mathematical Society, Vol. 72, 

No. 3, May 1966, pg. 515-19. 

Most of the results in this thesis are well known, 

however the proofs were developed by the author with 

occasional assistance by his graduate adviser and members 

of his committee. Where this is not the case, the source 

has been clearly Indicated. 

v 
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CHAPTER I 

INTRODUCTION 

In this chapter we shall Introduce Hilbert Space and 

show that It Is a metric space. Then, using the fact that 

It Is a metric space, we will define a topology for the 

space, hence giving us that Hilbert Space Is a topological 

space. Throughout this chapter, we will be chiefly inter­

ested in Introducing terms and results that will be of 

Importance to us in the later chapters, where we attempt 

the more difficult topological properties. We conclude the 

chapter by showing that Hilbert Space is not the product of 

the real line, taken with itBelf, infinitely many times. 

DEFINITION 1.1 The set of all sequences {x^} of real 

between two such sequences (x^} and Cyn) is defined to 

n«l 

as Hilbert Space. Such a sequence Cxn) Is known as a 

point In Hilbert Space. 

DEFINITION 1.2 A pair of objects (X,p) consisting of a 

non-empty set X and a function p : X x X —> R is a 

metric space provided that: 

x2 < w and where the distance 
n 

is denoted by E® and is known 



2 

1, p (x ,y) ;> 0 for all x,y e X . 

2. p (x ,y) sO if and only if x = y for x,y e X , 

3« P ( x,y) « p (y,x) for all x,y e X . 

4. p (x ,z) £p (x,y) + P (y,z) for all x,y,z « X . 

THEOREM 1.1 
/ 

Ew is a metric space. 

Proof: 

Let x ® Cxn} and y m {ynl be any two points in 

• To begin with, we would like to show that 

is always convergent for 

all x,y e . Consider 

CO CO 

I  K - yn>2 - 1 - 2vn + y2 

00 CO 

- I "h + I yn - 2 I Vn 

applying the Cauchy inequality 

00 co oo 

n»l n»l 

thus getting 



3 

00 00 09 00 - ,0 CO I/O 

1 I -5* 1 -3 (I >3 • 
n»l n=l n»l n«l n=*l 

Since x,y e E 8' , by definition 1.1 everything on the 

right hand side of the inequality converges, thus 

00 

(x - yn)2 < co . Therefore, for all ' x,y c E 85 , 

n-1 

P (x ,y) < oo . 

Since the point 0 « (0, 0, ...) is in Ew , E® 

is clearly non-empty, Nov/ in calculating p (x ,y) , we 

are always squaring the difference, adding non-negative 

numbers, and then taking the square root of a non-negative 

number. Hence, p (x ,y) ̂  0 for all x,y s E& . Suppose 

that for x,y e Em , we have that x » y , then for all 

03 1/2 n ' "n-y., a"3 [ 1 J m ThuB' 
n«l 

P (x ,y) «* 0 . Nov/ suppose that p (x ,y) » 0 , then 

t» 

£ (x^ - yn)2 « 0 . Hence, we have in the sum, the 

n«l 

infinite series of non-negative numbers is zero, hence, 

each number of the series must be zero. Thus, for all 

n , xn « yn which implies that x « y . Now for each 

x,y « E® , we have that 

r 00 cr1/2 r ? Pi1/2 
p(x,y) - [ I - yn) j - [ I (yn - *«) J - p<y'x> 

n«l n»l 
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Now let x,y,z e E® , then 

CO 

P (X,z) - [ y - zn>sj 

n«sl 

1/2 

[I -y n) +  <y n  - zn>> a. 
n«l 

1/2 

If we now square both sides and the terms inside the sum­

mation, we will get 

00 00 

[p (x,z)] - £ (x„ - yn)s + £ (yn - zny 

n=l n»l 

+ 2 I K - yn)(yn - zn> - [> <x'y>T 
n=l 

CO 

+ [p (y,z)] + 2 y (xn - yn)(yn - zj 

n»l 

again, applying the Cauchy Inequality 

CO 

I <*» - yn><yn - zn> 
n=l 

r r . f V / \2T?"^ 
l l  ^ n " z n ) J  *  

n*l nsal 

Thus, getting that 
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P (x ,z)] ^[P (x,y)] + [P (y,z)] + 2p (x,y) p (y,z) 

.... 2 

» [p (x,y) + P (y,z)j 

p (x ,z) £ P (x,y) + P (y,z) 

Therefore, E® Is a metrle space. 

DEFINITION 1.3 Let X be a non-empty set and J a col­

lection of subsets of X such that 

1. X and |) are members of J , 

2. If 01, 02, . . . , 0n are in J , 

n 
then 0., e J . 

J»1 " 

3. If for each a s I , 0 e J , then 

U o„ « J . _ a 
cut I 

The pair of objects (X,J) is called a topological space. 

The set X is called the underlying set and the collection 

J is called the topology on the set X . The members of 

J are called the open sets in the topological space X . 

DEFINITION 1.4 Let x be some point in Ew and let 

r > 0 . An open sphere of radius r about x , denoted by 

S (x,r) , will consist of the set of all points at 

distance less than r from x , that Isj 

S (x,r) « { y I P (x ,y) < r } . 
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DEFINITION 1.5 A set U in a metric space Is open If and 

only if for each point x In U , there exists an open 

sphere S (x,r) containing x such that S (x,r) c U , 

DEFINITION 1.6 A set U in a topological space (X,J) Is 

a neighborhood of a point x if and only If U contains an 
/ 

open set to which x belongs. 

DEFINITION 1.7 A family 8 of open sets is a base for a 

topology J if and only if, 0 is a subfamily of J and 

for each point x of the space, and each neighborhood U 

of x , there is a member V of B such that x e V c U . 

Me would now like to establish that the set of all 

open spheres in is a base for the topology in E(fl . 

This topology will consist of the collection of all sets 

formed by unions and finite intersections of open spheres. 

THEOREM 1.2 

The family of all open spheres in E10 is a base for 

the topology J of E^ . 

Proof: 

Since Hilbert Space is a metric space, It will be 

sufficient to show that the intersection of two open 

spheres contains an open sphere about each of its points. 

Let x and y be two points In and let S (x,r) 

and S (y,r) be two open spheres about x and y of 

radius r . Let z e S (x,r) n S (y,r) , then 
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z c S (x,r) and z e S (y,r) . How since S (x,r) is 

open, there is some 6 > 0 such that S(z,51) c S(x,r) . 

Likewise, there exists some $ 2 > 0 such that 

S (z,S2) c S(y,r) . Let 5 « min. (6X, * tiien 

S (z,5) e S (x,r) n S (y,r) 

Now z being arbitrary inplies that this result holds for 

all points belonging to S (x,r) n S (y,r) . Hence, by 

definition, the family of all open spheres in E4® is a 

base for the topology J of Ew . 

We would at this time like to state two properties, 

seemingly unrelated to the material already presented in 

this chapter, that will be of considerable importance 

throughout the remainder of this thesis. 

DEFINITION 1,8 The distance from a point x to a non-

void subset A of a metric space is defined to be 

p (x ,A) « lnf {p (x,y) j y « A } . 

LEMMA 1.1 

If A is a fixed subset of a metric space, then the 

distance from a point x to A is a continuous function 

of x relative to the metric topology. (See appendix for 

proof.) 
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We will now conclude the chapter with the following 

result; 

THEOREM 1.3 

E® is not the product space 

X {Sn ' Sn " E1 for «ai « « « } • 

Proof: 

Let S » ̂  {sn j S n « E1 for all n e a > j . 

Let x « (x,, x2, . . .) be any point in E® , then 

clearly from the definition of E® (definition 1.1), 

x e S . Now consider the set of all points 

yn « (n, n, n, . . .) for all new, belonging to S . 

00 

Since for all new, £ y^ • « , we have that 

n*l 

yR ^ E® . Therefore, E® c S . 



CHAPTER II 

TOPOLOGICAL PROPERTIES 

Separation Axioms 

This chapter will be devoted to developing the vari­

ous separation properties that topological spaces may 

possess. We will begin by showing E® to be a TQ-space 

and then proceed to add on more demanding requirements. 

The chapter will be concluded by showing that Hilbert Space 

is actually a Tychonoff Space and is hence homeomorphic to 

a subspace of a cube. 

DEFINITION 2.1 A topological space is a Tq-space if and 

only if for any two distinct points a and b , there is 

an open set containing a but not b . 

THEOREM 2.1 

is a TQ-space. 

Proofs 

Let a » Ca^ and b » {bn1 be any two distinct 

points of E® , then there exists some r > 0 such that 

P 
n«l 

9 
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Now construct an open sphere S (a,r) about the point a 

of radius r , then certainly a e S (a,r) but 

b { S (a,r) . Thus, E® is a TQ-space. 

DEFINITION 2 . 2  A topological space X is a Tx-space if 

and only if each set which consists of a single point is 
/ 

closed, that is, fx] is closed for all x « X . 

THEOREM 2.2 

E® is a T1 -space. 

Proof: 

Let x » (xnl be any point of E® . We wish to show 

that fx} is closed. Consider E® - {x} and let 

ye (E® - {x}) . Let p (x ,y) « 3r , then we can con­

struct an open sphere S (y,r) about y such that 

x t S (y,r) c (E® - fx}) . Hence, E® - fx} is a neigh­

borhood of all of its points, which implies that E® - fx} 

is open. Therefore, fx} is closed and E® is a T-^-space. 

DEFINITION 2,3 A topological space is Hausdorff, Tg , if 

and only if whenever x and y are distinct points of the 

space, there exist disjoint neighborhoods of x and y . 

THEOREM 2.3 

E® is a Hausdorff Space. 
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Proofs 

Suppose that x « fx^] and y - {yn1 are distinct 

points of Em , then there is some r > 0 such that 

P (x ,y) m 3*1 • Construct open spheres S.^ and Sg about 

x and y of radius r . Then x e S l and y e Sg and 

Si n S2 « (|) . To show this, let a be any point belong­

ing to S1 , then p (x ,a) < r and 

p (x, a) + p (a,y) > p (x,y) 

P (a ,y) > P (x,y) - p (x,a) 

p (a ,y) > 3r - r ® 2r 

Hence a $ Sg and Em is Hausdorff. 

DEFINITION 2.4 A topological space is regular, if and only 

if for each point x and each neighborhood U of x , 

there is a closed neighborhood V of x such that V c U , 

THEOREM 2.4 

Em is regular. 

Proof: 

Let x be any point of E® , and let 0 be any 

neighborhood of x . Then for some r > 0 , we can con­

struct an open sphere S (x,r) such that x e S (x,r) c U , 

Let T « {y | ye E®", p (x,y) £ r/2} , then T is closed, 

since p (x ,y) is continuous and the set of points where 

P ( x,y) £ r is closed. Therefore, x e T e S (x,r) c U . 
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Hence E® is a regular space. 

DEFINITION 2.5 A topological space is normal if and only 

if for each disjoint pair of closed sets, A and B , 

there are disjoint open sets U and V such that A c U 

and B c V . 
/ 

THEOREM 2.5 

E® is normal. 

Proof: 

Let A and B be disjoint closed sets in E® . For 

each x e E m , let p (A ,x) and p (B ,x) be the distance 

from x to A and from x to B . Let 

f(x) » p (A ,x) - p (B,x) 

then f is continuous in x . Now let 

U «• {x 1 f{x ) <0} and V - (x | f(x) > 0} 

then U and V are open and disjoint, since f Is con­

tinuous. The closure of a set In a metric space Is the set 

of all points which are 2ero distance from the set. Hence, 

A c U and B c V , and Ew is normal. 

Now since a regular T1-space is a T^-space and a 

normal T1-space Is a T^-space, we have that Hilbert Space 

is also T^ and T^ . 
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LEMMA 2,1 (Urysohn) 

Let X be a normal space, A,B closed disjoint 

subsets of X , then there exists a continuous mapping 

f s x —> [0,1] such that f(A) * 0 and f(B) » 1 

(for proof see appendix). 

/ 

DEFINITION 2.6 A topological space X is called com­

pletely regular if and only if for each x e X and each 

neighborhood U of x , there is a continuous function f 

on X to [0,1] such that f(x) » 0 and f(X - U) « 1 . 

THEOREM 2.6 

E® is a completely regular space. 

Proof: 

Let x be any point of E® and U an open 

neighborhood of x in E® . By theorem 2.2, E® is a 

T^-space, hence, [x] is a closed set in E® . Let 

A a (x) and B » (E® - U) , then A and B are disjoint 

closed subsets of E® . By theorem 2.5, E® is normal. 

Hence, lemma 2.1 says that there exists a continuous func­

tion f : E® —> [0,1] such that f(A) » 0 and f(B) « 1. 

Therefore, E® is a completely regular space. 

The cartesian product of closed unit intervals, with 

the product topology, is called a cube. A cube is then 

the set QA of all functions of a set A to the closed 

unit interval Q , with the topology of pointwise, or 
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coordinate-wise, convergence. Suppose that P is a family 

of functions such that each member f of P is on a topo­

logical space X to a space Yf (the range may be 

different for different members of P ). There is then a 

natural mapping of X into the product ^ j f e P] 

which is defined by mapping a point x of X into the 

member of the product whose f-th coordinate is f(x) , 

Formally, the evaluation map e is defined by: 

e(x)f ® f(x) . It turns out that e is continuous if the 

members of P are continuous and e is a homeomorphism 

if, in addition, F contains "enough functions". 

DEFINITION 2.7 A family of functions P on X distin­

guishes points if and only if for each pair of distinct 

points x and y there is an f e P such that f(x) 4s 

f(y). The family P distinguishes points and closed sets 

if and only if for each subset A of X and each 

x e X - A , there is an f e P such that f(x) does 

not belong to the closure of f(A) . 

EMBEDDING LEMMA 2.2 

Let P be a family of continuous functions each 

member f being on a topological space X into a topo­

logical space Yf . Then 

(a) The evaluation map e is a continuous function 

on X to the product space ^x^CY^ | f e P} . 
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(b) The function e is an open map of X onto 

e[X] if P distinguishes points and closed 

sets. 

(c) The function e is one-to-one if and only if 

P distinguishes points. 

(for proof see appendix) 

Now since a completely regular T^-space is a 

Tychonoff Space, we see that E*" is a Tychonoff Space. 

If we let P be the family of all continuous functions on 

E® to [0,1] , then the Embedding Lemma 2.2, shows that 
I? 

the evaluation map of E0> into the cube Q is a homeo-

morphism, since 

EMBEDDING THEOREM 2.7 

In order that a topological space be a Tychonoff 

Space It is necessary and sufficient that it be homeo-

morphlc to a subspace of a cube, (for proof see appendix) 

In this chapter we have shown that Hilbert Space 

possesses the Important separation properties. We con­

cluded by showing E^ to be a Tychonoff Space, and hence 

by the Embedding Theorem 2,7, it may be mapped into a cube 

by a homeomorphism. 



CHAPTER III 

TOPOLOGICAL PROPERTIES 

In this chapter we shall be interested in showing 

that Hilbert Space is a complete separable metric space, 

but is neither compact nor locally compact. After estab­

lishing these properties, we will then introduce what is 

known as the Hilbert Cube and show that it is compact and 

that no non-empty open subset of E® is contained in the 

Hilbert Cube. However, first we would like to look at an 

important result concerning convergence of infinite 

sequences in E® . 

THEOREM 3.1 

Given * (ain' a2n* a3n' * * a secluence of" 

points in E® , {x^ converges to a - (a1# ag, â  . . .) 

then 11m akn » ak and this point a is unique. 

Given r > 0 , let {x^} be a sequence of points 

in E® converging to a « (a1, a2, a^, . . .)* Then 

there exists an integer N > 0 , such that for n > N , 

n—>» 

Proofs 

k«l 

16 
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holds for all k . Then for each k , we have that 

(®kn " ak)2 < 1,2 or that I akn ~ ak ' < r • Hence 

11m • a^ . 

n—> w 

Now suppose that lim akn » holds for all k and 

n—> co 
/' 

{x^} converges to b « (b1, bg, b^, . » .)• Now from the 

first part of the theorem, we see that for r > 0 , there 

IB an N > 0 , such that for n > N , | - bk | < r 

for all k . Then lim » bk for each k , But, by 

n—> oo 

assumption, we have that lim - ak , and since a 

n—> <» 

sequence of real numbers can converge to at most one point, 

we have that ak - bk for all values of k . 

We would now like to present an example showing that 

the converse of theorem 3.1 does not hold in Ew . That 

is, if a sequence of points belongs to , then it is 

not necessarily true that the sequence will always con­

verge to a point of E05 . 
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EXAMPLE: Consider the following collection of points 

1, 1 , 1 , 1 , 
ST 3 W . . .J 

l, 1 
(2)3A (3)3A (4)3/4 

> • • • 

X2 
{i)5/S (3)5/8 (4)5/8 

p • • • 

where for each n , the exponent is determined by the 

2^ + 1 
formula Now for all n , x^ e E® since 

•par • 

OS 

I 
n«*l n *2p 

< c o  i f  a n d  o n l y  i f  2 p  >  1  

However, since 2"n^11 - 1 + .V.2". we see that 
2 2 

lim 

n—~> <» 

2n + 1 
^hT 

lim 

n—> on 

1 + 1/2" 1 

Hence lira • K /0 ' bUt I 
\tL/d k»l 

oo and so the 

n—> oo 

convergence of the coordinates in E"5 does not imply that 

the sequence of points converges to a point of E,J) . 
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DEFINITION 3*1 Let (X,p) be a metric space. Let {an} 

be a sequence of points of X . A point x e X is said 

to be the limit of the sequence [} if 

lim p (a n,x) « 0 . 

n—> oo 

/ 

DEFINITION 3.2 In a metric space (X,p ) , a sequence 

t*n} of points of X is called a Cauchy Sequence if and 

only if for each r > 0 , there is an N > 0 such that 

P (%>%) < r whenever n,ra > N . 

DEFINITION 3.3 A metric space X is complete if every 

Cauchy Sequence of points of X converges to a point of X. 

THEOREM 3.2 

E4" is a complete metric space. 

Proofs 

For x^ m (a^n, a3n' * * • ) be any 

Cauchy Sequence of points in E40 , Then for each r > 0 , 

there is an Nr > 0 , such that if n,m > Nr 

2 f! [" K'V] - I Hn - °kB)2 < r • 
k»l 

Hence, for each k , (o^ - â )2 < r if n,m > Np . 

Thus for each k , the sequence of real numbers {a^} 

converges. Now since E-j is complete, there exists an 
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such that lira * a^. Let a « (a^, a2, â , . . .), 

n—> oo 

then we wish to show 

00 

(D. I  4 < ~  
k»l 

/ 

(2). lira p ( 35^,3.) » 0 

n—> » 

Let M be arbitrary and write the inequality as follows; 

CO M 00 

I <°ta - %/ " I ("to - °km>S + I Kn - %/ < r 
k»l k»l k»M+l 

Since each of these sums is non-negative, each of them is 

M 

less than r . Consequently, £ (c*kn - â )2 < r . 
k-1 

If we take the limit as n —> oo , we obtain 

M 

I  K " ̂m)2 1 r 
kal 

Since this inequality is valid for arbitrary M , we can 

00 

take the limit as M —> oo obtaining ^ (ak - â ) <£ r . 

k»l 

® 1/2 
lim p (x ^.a) - lira [ £ (ak - ĉ )2] - O 

M—> oo M—> oo k«l 
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Therefore, from the inequality obtained and the conver-

00 

gence of the series £ aj^ we can get the following 

k-1 

results; 

^2akra ak^ ® ' 

"<4 - Hb'HC + >0 

44 - Km0* + 2ak > ak 

2 [4 " 2akmak + a5 + 24 i * 
2 I Km * ak>2 + 2 I 4 ̂ I 

k*l k**l k*l 

CO 00 

a2 
*k 

and since everything on the left hand side converges, we 

00 

have that £ a^ converges. Therefore, a « {ak1 is a 

k»l 

point in E® and Hllbert Space is complete. 

DEFINITION 3.4 A set A is dense in a topological space 

if and only if the closure of A is the whole space. 

DEFINITION 3«5 A topological space is separable If and 

only if there is a countable subset which is dense in the 

space. 

THEOREM 3.3 

E® is a separable space. 
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Proof: 

We will define a point of E® to be rational if each 

coordinate of the point is a rational number. Let 

x « (x^ Xg, 3U, . . .) be any element in Ew . For 

each coordinate of x , there is a countable number of 

rational numbers as entries, and since there are a 

countable number of coordinates of x , the rational 

points of Em are countable. Consider, the set of all 

points T such that all but a finite number of the 

coordinates are zero, and those that are not zero are 

rational. Given r > 0 , let x = {x^ be any point in 

CO 

E® , Choose N so large that £ (x^)2 < r2/2 * Now 

n»N 

consider all points a «* (a^, a^, a^, . . .) in T such 

that for n > N , a„ « 0 . We wish to show that we can —• il 

find a member of T as close to x * Cxn) as we choose. 

For n * 1, 2, . . . , N-l , choose afi such that 

j a n - xn | < r/[2(N-l)]1/2 . This is always possible 

since the rational numbers are dense in , then 
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CO 

p (x ,a) -[ £ (an - xn) 

n»l 

2 1/2 

t"f <•» f <•. - vi"* 
n»l n»N 

N-l » 

[I Cn-V2 - I ^ 
n«l n«N 

N-l 

< [ \ r2/2(N-l) + r2/2] 

n»l 

SS V 

Therefore, the rational numbers In E^ are a countable 

dense subset of Ew and this implies that E® is 

separable. 

Having now established Hllbert Space complete and 

separable, we would like to show that it is neither com­

pact nor locally compact, hence, producing a major 

topological difference between E® and Euclidean n-space. 

We will introduce two different but equivalent definitions 

of compactness, the first of which isj 

DEFINITION 3.6 A family /j is a cover of a set B if 

and only if B is contained in \J [A \ A e ft } . The 

family ft is an open cover of B if and only if each 

member of A is an open set. A is a subcover of ft if 

and only if A c ft » 
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DEFINITION 3.7 A topological space X Is compact if and 

only If each open cover of X has a finite subcover. 

THEOREM 3 A 

Ew is not compact. 

Proof: 

Consider the following sequence of points 

a (l| 0, Oj • . . , 0, . . •) 

Xg 88 (0, 2, 0, • « • $ 0 , • * • ) 

X3 » (0, 0, 3, . . . , 0, . . .) 

# 

• 

» (0, 0, 0, « • • ; H| • « i ) 

characterized by the fact that all coordinates are zero 

except the n-th coordinate of x^ , which is n • 

Clearly, for all values of n, 2̂  Is In E4' . Now for 

all n , let Afi be an open sphere of radius r « 1 

containing the point x^ . Then {An} , n « 1, 2, . . , 

is an open covering of * However, the distance 

between two points xn and x^ of (x^} , where n m , 

is always 
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P * tn2 + > 1 

for all m and n . Hence, each member of {An} can 

contain at most one member of (x^} and since {x^} Is 

infinite, no finite subcoverings of {x^} by members of 
/ 

[An) will cover fx^} . Therefore, E® is not compact. 

DEFINITION 3*8 A topological space X is said to be 

locally compact provided that for each x e X , there 

exists at least one contact neighborhood of x . 

DEFINITION 3.9 A subset A of a topological space S is 

said to be countably compact if and only if every infinite 

subset of A has at least one limit point. In A . 

LEMMA 3.1 

A subset T of a metric space S is compact if and 

only If It Is countably compact. 

(for proof see appendix) 

THEOREM 3.5 

E® is not locally compact. 

Proofs 

Suppose E® is locally compact. Then there is a 

compact neighborhood U of the origin 

0 • (0, 0, 0, . . .) . Choose r > 0 , such that the 
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closed sphere of radius r about the origin is included 

in U . Let 

[Iv» 
n»l 

2 

(bij) 
, J 

6 , i > J > 1 
i - j + 1 

let B1 = (toii) » then we set the followlnS family of 
'j ~ 

sequences 

B, » (6, 6/2, 6/3, . . , , 6/k, . . .) 

B2 « (0, 6, 6/2, . . . , 8/k-l, , . 

• (0, 0, 6, . . » , 6/k-2, . • .) 

* (0, 0, 0, •••, 8,6/2, • • •) 

Now from this family of sequences that we have just 

defined, we can get the following results: 
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U )  P  < 0 , ( 0 - b i J ) 2 f 2  

i—1 

. . [ f  V i 2 ] 1 / 2 -
1-1 

holds for each j . 

(11) lim b±j « 0 holds for all 1 , hence 

j—>» 

—> 0 as J — > « . 

But the compactness of II requires that the sequence 

(B>1 must have a convergent subsequence, see definition 
J 

3.9 and lemma 3.1. Also, the convergence of (Bj) 

requires that the sequence (Bj) must converge to the 

origin, see definition 3.1. But by (l), we have that no 

subsequence can converge to the origin. A contradiction 

to the hypothesis that Em is locally compact. Hence, 

E® is not locally compact. 

Having now established that E® is neither compact 

nor locally compact, we would like to introduce the most 

important subspace of E10 . This subspace is called the 

Hilbert Cube. We will show that it is conpact, hence 

locally compact, since a compact space is automatically 

locally compact. 
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DEFINITION 3»1Q The subspace of E® consisting of all 

sequences {x^} such that £ 1/n is denoted by J® 

and is called the Hilbert Cube. 

THEOREM 3*6 

The Hilbert Cube, J® , is compact. 

Proofs 

Let - (zln, ẑ , z3n, . . .) represent any 

arbitrary sequence of points such that each x^ e J 0' . 

We wish to show that {x^} contains a subsequence which 

converges to a point of . Consider the sequence 

formed by the first coordinates of the points of {x^} . 

Doing this we get 

P1 " (zll* z12' z13* • • 

where jzln| ^ 1 for all n . Now every infinite bounded 

set in E1 has at least one limit point in . Hence, 

there exists some a^ such that J a^j £ 1 and a 

subsequence 

P1 * Zl«2' Zla3* ' ' 

which converges to ^ . Now form the sequence of the 

second coordinates from the members of {x^} whose first 
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coordinates define P^[ . We will then get 

P2 " ̂Z2a1* z2a2' z2cy • • •) 

where | z2a j £ 1/2 for all values of 1 . Thus, there 
1 

is some a2 such that j a2| £ 1/2 and a subsequence 

P2 " ̂ Z28./ Z2S2* Z2P3' ' * 

which converges to a2 . Continuing this process k 

times, we will get a sequence of points 

pk 18 ^kp-j/ zkp2' zkp3* ' * 

that are the k-th coordinates of the members of {x^ 

whose (k-l)-th coordinates converged to some point ak-1 

such that |ak_xj £ 1/k-l . Similarlly, since for all 

1 t !zkp | £ 1/k , there exists some ak such that 

Kl £ 1/k and a subsequence 

pk * %2' zk^3' * * 

which converges to . Therefore, for all n , we can 

find a sequence of points which contains a subsequence 
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whose n-th coordinates converge to a point an such 

that 1 l/n • 

We wish to flrid a subsequence of {x^} and show 

that it converges to a point of J0 . Let us construct a 

subsequence as followss choose the point x whose 

first coordinate is zia^> whose first coordinate is 

z^a and second coordinate is z^ , continuing this 
2 2 

process, we see that the k-th point x^ would have 
k 

c o o r d i n a t e s  ( ^ ,  •  .  •  ,  z ^  , • • « ) «  Th u s ,  

we can construct a subsequence of fx^} 

<V *®2' ' * ' ' X|*k' " ' 

which certainly converges to a ® 

(ax, a2, a^' • • # » ak, . . .) and since k was 

arbitrary, we know that it holds for all k . Also, for 

all n , | aU £ 1/n which implies that a s Jw , 

Therefore, J0 is countably compact and hence by 

lemma 1.1, J0 is compact. 

THEOREM 3*7 

J0 contains no non-empty open subset of E0 . 
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Proof: 

Let T be some non-empty open subset of E® . 

Suppose that T e J*9 and let x » (x^, Xg, x^, . . .) 

be some point of T . Now since T Is open, for some 

r > 0 , there is an open sphere about x of radius r 
/ 

such that 

S (x,r) c T c J*9 

Now consider the point 

y - (x^ Xg, • • • , x^+r/2, x^, . . .) . Clearly 

y e S (x,r) . Now if we go out far enough so that 

1/n < r/4 then 

-r/4 1 < r/4 

0 < 1 *n + r/2 1 3r/4 

hence 1/n < r/4 £ 1*^ + r/2| 

which implies that y \ J* 9 . Therefore, T cannot be a 

subset of J"5 . 



CHAPTER IV 

TOPOLOGICAL PROPERTIES 

Our chief aim in this chapter will be to establish 

that Hilbert Space is both locally connected and connected. 

To do this we will begin by introducing the notion of a 

line segment in E50 , and then proceed to show that every 

line segment in E1* is connected. This last statement 

will be the result of showing that every line segment in 

Em can be mapped onto the unit interval [0,1] by a 

homeomorphism. Thus, since homeomorphisms preserve 

topological properties, and since [0,1] is connected, 

we will easily establish that all line segments in E® 

are connected. The chapter will be concluded by showing 

that both E0> and J® are perfect sets. 

DEFINITION 4.1 Let x and y be any two distinct points 

in e"5 . A line segment between x and y will be 

given by 

L (x,y) - [z « ax + (1 - a)y f 0 < a £ 1] 

LEMMA 4,1 

Let L (x,y) be any line segment in Ew . For each 

z e L (x,y) the following holds 

(1) p (x ,z) + p (z,y) « P (x,y) 

-32-
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(2) There is one and only one a such that 

z m ax + (l - a)y . 

Proofx 

Let x « f and y « {yn} be two points in Ew , 

and let L (x,y) be a line segment between them. Let 

z m fzn1 be any point belonging to L (x,y) , then 

p (x,z )  + p (z ,y)  -  [  I (Xn - zn)2]1/2+ [ I (*n - yn)2]1/2 

n«l n»l 

- [ i(*a '"to " (l-a)y„)S]1/a 

n«l 

r- r"1 p~ 1/2 + UK + - yn> 
00 

» i nrsr 4. i i -n iv «• v f 
L 
n-1 

where zn » ox^ + (l-a)y, n 

[ Z (U-oK - d-a)yn)2]1/£ 

n»l 

+ [ I(ax„ - ayn)2]1/S 

n«l 

,1/2 
[*n - ynr 

n«l 

- u-°)[ Z - yn>2T 

00 

- [ Z - yn)2]V£ 

n«l 
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r ? sn1/2 [ I - yn> J 
n«l 

- P (x ,y) 

Now suppose that p (x ,y) « r . Let z ® ax + (l-a)y 

and w » aQx + (l-aQ)y be two distinct points on 

L (x,y) , then 

p (z ,w) = [ I (zn - wn) J 

n-1 

r c p-i/S - [ 1 (""n + " ao*n " U-a0)y„) . 
n«l 

r " 2i 1/2 -  L L ( ( a  -  ao ) xn -  <a  -  a o> yn> .  
n»l 

00 

n*»l 

hence, 0 < | a - aQ j ® (l/r) p (z,w) < 1 • Therefore, 

for distinct points on L (x,y) , we get distinct 

values of a . 

DEFINITION 4.2 Let S and T be topological spaces. 

S is homeomorphic to T if and only if there is a 

one-to-one continuous mapping f of S onto T such 

that f"1 is continuous. 
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LEMMA 4.2 

Let x and y be distinct points in Ef and 

L (x,y) be the line segment between them. For 

z m ax + (l-a)y , the mapping f : L (x,y) —> [0,1] 

defines a homeomorphism between L (x,y) and [0,1] 

in . 

Proof: 

Obviously, from the uniqueness of a , the mapping 

will be one-to-one and onto. We now wish to verify that 

f and f-1 are both continuous. We will first show that 

f is continuous at an arbitrary point z c L (x,y) , 

hence it will be continuous for all points of the line 

segment. Let p (x ,y) =* r then given a > 0 , let 

6 a m and suppose that z = Czn1 w 83 are 

points of L (x,y) such that p (z ,w) < 6 , then 

defined by f (x) » 1 

f (y) - 0 

f (z) » a for all z c L (x,y) 

hence, j a - a Q | < 6/r . Therefore, 
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j f(z ) - f(w) J «| a ~ aQ j < 6 /r « a which implies 

that f is continuous at z . Hence, f is continuous 

at all points of L (x,y) . 

Now, to show f'1 continuous. For a > 0 , choose 

5 « a/r , Then if j a - a Q | <5 , letting f"1(ct) « z 

and f_1(a ) « w we have that 
' o' 

1/2 
p(f-1(a) , f-1(ao)) » P (z,w) » [ £ (zn - wn) 

n*l 

2" 

i 01 - % i [ - yn> 
2-1/2 

n«l 

< 6r « a 

which implies that f"*1 is continuous at a , hence 

continuous at all points of [0,1] since a was 

arbitrary. Therefore, f is a homeomorphism between 

L (x,y) and [0,1] . 

DEFINITION 4,3 A point x is an accumulation point of a 

subset A of a topological space X if and only if 

every neighborhood of x contains points of A other 

than x , 

DEFINITION 4,4 A subset A of a topological space X is 

closed if and only if it contains the set of its 
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accumulation points. The closure of the subset A will 

be denoted by X , and is A together with all of its 

accumulation points. 

DEFINITION 4.5 Two subsets A and B are separated in 

a topological space X if and only if 3T fl B and A n ff 
/ 

are both void, 

DEFINITION 4,6 A topological space X is connected if 

and only if X is not the union of two non-void separated 

subsets of X . 

LEMMA 4.3 

All line segments in Ew are connected. If L (x,y) 

Is a line segment between two points x and y , where 

x and y are points of some open sphere, then L (x,y) 

is contained In the open sphere. 

Proof: 

Let L(x,y) be any line segment in E® . By 

lemma 4.2, we can define a homeomorphism between L (x,y) 

and [0,1] . Since [0,1] Is connected and homeo-

morphlsms preserve topological properties, L (x,y) 

Is connected. 

Now let p » {pnl be any point of E® and S (p,r) 

be any open sphere of radius r about p . Suppose that 

x and y are points in S (p,r) and L (x,y) the line 

segment between them. Let z be any point on L (x,y) , 
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then 

r c 2-,l/2 
p (p,«) - L 1 <Pn * zn> J 

n=l 

[ I <Pn " «n " U-a>yn> . 2-1/2 

n*l 

211/2 
\ (a(Pn ~ xn) + (l~a)(Pn ~ 
n=l 

r ? PI1/2 r ? , .211/2 
1 a [ I (Pn ' xn> J +  ( l ~ a ) L  L K ~ yn> . 

n=l n-1 

» op (p,x) + (l-a)p (p,y) 

£ ar + (l-a)r * r . 

Hence, z e S (p,r) for all z e L (x,y) , thus 

L (x,y) e S (p,r) . 

DEFINITION 4.7 A topological space X Is said to be 

locally connected at a point p if and only if given any 

neighborhood U of p » there exists a connected 

neighborhood V of p such that V c U . The space X 

is said to be locally connected if and only if it is 

locally connected at each of its points. 

Having now shown that all line segments in Hilbert 

Space are connected, we will employ this property of line 
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segments in E® to show that E® is a locally connected 

space, from which connectedness of E® follows very 

readily. 

THEOREM 4.1 

E® is a locally connected space. 

Proof: 

Let p be any point in E® and U be some 

neighborhood of p . For some r > 0 , we can find an 

open sphere S (p,r) such that p c S (p ,r) c U . 

Suppose S(p,r) is not connected, then there are disjoint 

separated open sets A and B of S (p,r) such that 

A U B » S (p,r) . Let A be such that p s A and 

q e B . Let L (p,q) be the line segment between p 

and q . Let C =» A n L (p,q) and D - B n L (p,q) . 

Then C fl D « (J) and no point of C can be a limit point 

of D . Likewise, no point of D can be a limit point 

of C , since A and B are disjoint and separated. 

However, L (p,q) * C U D which implies that L (p,q) 

must not be connected, a contradiction by lemma 4.3. 

Hence, S (p,r) must be connected and since open spheres 

in E® are neighborhoods, we have that E® is locally 

connected. 
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LEMMA 4.4 

Let 8 be a family of connected subsets of a topo­

logical space. If no two members of 8 are separated, 

then U fB J B e 8 ) is connected. 

(for proof see appendix) 

/ 

THEOREM 4.2 

E*" is a connected space. 

Proof: 

Let T be the family of all open spheres centered 

at the origin in E® . That is, 

T = |S (0,r) | r > 0 and 0 « (0, 0, 0, ...)} * 

By theorem 4.1, each member of T is connected and since 

for r^ < r2 , we have that 

S (0,^) c S (0,r2) 

Thus, no two members of T are separated. Therefore, by 

lemma 4.4, we know that U {s (0,r) | S (0,r) e Tj is 

connected, and since the union of all open spheres 

centered at the origin is the space E® , that is 

U (S (0,r) | S (0,r) s t} « fi® 

we have that Ew is connected. 
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Having now established that is both locally 

connected and connected, we would now like to investigate 

the possibility of Ew and J® being perfect sets. 

DEFINITION 4.8 A set S is dense in Itself if and only 

if each point of S is a limit point of S . 

DEFINITION 4,9 A closed set which is dense in itself is 

called perfect. 

THEOREM 4.3 

E® is a perfect set. 

Proof: 

Let y m (y^ y2, y^, . . .) be any point of E® 

and S (y,r) be an open sphere of radius r about y . 

Consider the following family of points 

« (yx, y2 + r/2n, y3, . . .) 

Each of these points is a point of Ew and p (y ,xn) < r 

for all n . Hence, for all r , there is at least a 

point of E® other than y in S (y,r) . Thus, since 

y was arbitrary, each point of Em is a limit point of 

Em . Therefore, E® is closed and dense in Itself which 

implies that E® is a perfect set. 
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THEOREM 4.4 (Borel-Lebesgue Theorem) 

A set K Is closed and bounded if and only if it is 

compact. 

(for proof see appendix) 

THEOREM 4.5 
/ 

is a perfect set. 

Proof: 

By theorem 3.6, J® is compact, hence by theorem 

4.4, J® is a bounded closed subset of E® . Let 

y « (yx, y2, y3, . . .) be any point of Jw . Choose 

some y then | y„ j < l/n . For convenience, we will n n -»• 

choose n » 3 , I y 3 I 1 1/3 . Now choose r such that 

J y^ + r J < 1/ 3 and consider the following family of 

points 

Cxn1 - (y-L, y2, y3 + r/n, y4, . . .) 

where n « 1, 2, 3 . . . , then certainly {xn} e J ta 

and p < r * Hence> every open sphere about y 

of radius r will contain points of J!0 other than y . 

Therefore, y is a limit point of Jw . Since y was 

arbitrary, every point of J® is a limit point of J° . 

Thus, J18 is a closed set and dense in itself, hence 

J® is a perfect set. 



CHAPTER V 

RELATIONSHIP OF HILBERT SPACE 

TO OTHER METRIC SPACES 

Here we will be interested in developing various 

metric spaces and showing how they are related to E<a . 

It will be shown that Euclidean n-space, denoted by En , 

is homeomorphic to a subspace of E10 , and that the 

mapping between En and the subspace of EM is an 

isometry. Probably the most important feature of the 

chapter is that it will be proved, that every second 

countable regular Hausdorff Space is homeomorphic to a 

subset of Jw . 

THEOREM 5.1 

Let W be the set of all sequences {x^ of real 

numbers such that for all n , 0 £ xn £ 1 . Then, if 

x « {xn] and y « Cyn) > denote points of W , the 

mapping f s W X W —> R defined by 

03 

f (x,y) - £ 2"n j x n - yn I 

n»l 

is a metric for W . 

43 
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Proofs 

Obviously, W is non-empty, since the point 

0 « (0, 0, 0, . . .) is in W . Now, for all points x 

and y in W , since 2~n j — y | >0 for all n , 

we have that f (x,y) ̂  0 , Suppose that f (x,y) » 0 , 

then 

00 

1 s~" I * * - I - 0 

n«l 

however, this holds if and only if xn « yn for all n , 

since | x^ - yn 1 > 0 for all n . Conversely, if 

xn « yn for all n , then | x^ - yn | =0 holds for 

all n , and consequently f (x,y) « 0 . Consider, now 

for all x,y e W , 

CO CO 

f(x,y) « £ 2~n ! x^ - yn | « £ 2"n | yn - xn | - f(y,x) 

n*l n=l 

also, for all x,y,z « W 

CO CO 

f(x,z) - I 2"n| ̂  - zn | - I 2'" I ^ * yn + yn " zn 1 

n«l n«l 

00 

^ I 2"" (I xn - I + I yn - zn 0 
n»l 
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00 00 

- I s'n I *» - i + I s"n I yn - zn I 
n«l n«=l 

» f(x,y) + f(y,z) 

Therefore, f(x,y) defines a metric for W . 

THEOREM 5.2 

The set W with the metric f Is homeomorphlc 

to J1" . 

Proof: 

For x « (x^, x2, x^> . . .) in , let F be 

a mapping of J10 into W as follows 

1 - nxn 
S3 W 

n F(xn) * an.'-• " » w 

where w « (ŵ , Wg, w^, . . .) is in V/ . Then what we 

have is a mapping of x —> w . Now let 

a * Eg) 33, • * •) and b • ̂^1* ^2* ^3* * • * ) 

be two points Jw such that a —> p and b —> p 

where p e W . Then for each n , 

1 - naj^ 1 - nbfi 
Pv n 

a «» b 
n n 
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Hence, a •» b and thus P is one-to-one. Now consider 

the following mapping 

1 - 2w 
G(w ) — " m x 

n; n n 

for w «* w2, w^, . . .) in W . „ This mapping 

carries w —•> x and is likewise one-to-one. Thus, 

if we set G(wn) » P""1(wn) we will have that P is an 

onto mapping, since it is invertible. 

We now wish to show that P is continuous. Given 

a > 0 , let a « fan} be any point in J® with image 

p = in W . Choose 

CO I n/2«+1 
n«l 

r ? 211/2 
Then whenever p (a ,x) «•- ^ (an - xn) J < s 

n«=l 

CO 

we have that f (p,w) = £ 2~n J Pn - wn i 

n«l 

oo 

1 J+r i ®n " *n I 
2' n«l 



CO 

Now, since £ (an - xn)2 < « we know that for each 

n-1 

(an - xj2 < 82 , hence, I % - *n ' < 6 ' Therefore, 

00 00 

X ds+r I ®h " *n ' < X pi+r *a 
n=si n»l K n/2n+1 

n*l 

Hence, F is continuous at a e J v0 and since a was 

arbitrary, F is continuous at all points of . 

Now we wish to show that F is continuous. 

Let p « Cpn) be any point of W with image a « [an] 

in . Let o > 0 be given. For each n , choose 

2 
62 = 

00 2n+2 I 2 
T 

n»l 

00 

then whenever f(p,w) = ^ 2~n j Pn - wn j < 6 

00 

we have that p (a ,x) - ! £ (afJ - x̂ 2] 

nasi 

1/2 
(®h - VJ 

nasi 

00 

[ I (p„ -
n*al 
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Now, since £ 2~n I Pn - wn 1 < 6 we have that for 

n«l 

each n , J p n - wn J < 221 6 . 

Thus, (pn - wn)2 < 22r^62 and 

[ I ** <Pn " < 
n*l 

~l 
Therefore, we have shown that F is continuous at 

p e W , and since p was arbitrary, F is continuous 

at all points in W . Hence, W with the metric f is 

homeomorphic to J"5 « 

DEFINITION 5.1 If (x ,p)  and (Y,o) are metric spaces, 

and if f is a mapping of X onto Y , then f is an 

isometry if and only if 

P (x,y) « a (f(x), f(y)) . 

THEOREM 5.3 

Each Euclidean n-space can be embedded in E^ , 

Proofs 

Let x » (xx, Xg, . . . , x^) be some point of En . 

CO 

I 
n»l 

.2n+2 

n 
CO 

I 
n«l 

,2n+2 

n 
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Let f be a mapping of En into E® , which carries 

the point x of En into the point 

X B Xgj • • » t X jjJ 0# • • *) 

Let 

S«{x' « (xllx2M..,xn}0,0,M.)| \ - ° for all m > n} 

then, f defines a mapping of Efi onto S , which is a 

subset of E® , Let a be the distance function on En , 

and for x,y e E n , let 

a (x,y) - [ T (^ - yJS]V2 

m«l 

Now consider 

p (f (x),f(y)) - P (x\yf) « [ £ (xm - ym)2] ̂  
mwl 

-tf <*.->./• 
m«l n*«n+l 

- [ I <** - yJzf2 - • <*•*> 
m*»l 

since for all m>n, « ym » 0 . Thus, f is an 

isometry between En and S . 
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DEFINITION 5.2 A base for the neighborhood system of a 

point x , or a local base at x , is a family of 

neighborhoods of x such that every neighborhood of 

x contains a member of the family. 

DEFINITION 5.3 A topological space X , which has a 
/ 

base $ , which is a countable family, is said to 

satisfy the second axiom of countabillty. 

DEFINITION 5.4 A function f on a topological space X 

to another topological space Y is open, If and only If, 

the image of each open set Is open, 

DEFINITION 5,5 A topological space is said to be 

completely normal, if and only if, every one of Its 

subspaces is normal, 

LEMMA 5.1 

Every regular space with a countable basis is 

conpletely normal. 

(for proof see appendix) 

Now that we have assembled these definitions and 

lemmas, we are In a position to assault the most 

important result of this chapter, which is stated as 

the next theorem. 
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THEOREM 5.4* 

Every second countable regular Hausdorff Space X 

is homeomorphic to a subset of the Hllbert Cube, 

Proof: 

Let B » fBi J i - 1, 2, 3, . . .] be the 
/ 

countable basis of X . By lemma 5.1, X is normal, 

and from the regularity of X , there are pairs of 

elements of 8 such that F±c . Since 8 is 

countable, the collection of all such pairs is again 

countablej let us call it 

P ** {P^ j n » 1 , 2, . « .} 

where Pn « (b" , B*J) and b" C b" . Now clearly B*J 

and X - B" are closed and b" ft (X - b") « , hence 

by lemma 2.1, a mapping 

f : X —> [0,1] can be defined 

such that ™ (X - B*j) •* 1 , Finally, 

define f : X —> Jm by 

*John D. Baum, Elements of Point Set Topology. Englewood 
Cliffs, New Jersey: Prentice Hall Inc., 1964. Theorem 
No. 5.1.3, PP. 129-130. 
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f(x) 
f (x) 
-iL— | n a 1, 2, 3» » • • 

since for each x , 0 fn(x) <£. 1 , f (x) e J® . 

First we wish to show that f is one-to-one. Let 

x ^ y , since X is Hausdorff, there exists open sets, 

which we may choose as basic sets B, B such that 

x e B and y e b' and B H b' - f . Further, since 
it 

X is normal, there exists B e £ such that 

x e b" c F c B , then x € S" and y e X - B and the 

ft 
pair (B ,B) e P , that Is, for some n , (B ,B) « 

(B^ , Bj) . Thus, 

f„(x) - fn(B^) - f„(B') - 0 

fn(y) - fn<X - Bj> - fn<X - B) - 1 

therefore, f(x) ± f(y) , since f(x) differs from 

f(y) at the n-th place. 

Now we show that f is continuous. Let x e X 

and let a > 0 . We wish to construct U e U x , the 

neighborhood system of x s X , such that for any y e U 

p (f( x),f(y)) < a to J™ 

First, since for any point y e X , 0 < fn (y)  1 > 

we have that 
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I fn<*> " fn<y> I 

CO 

The infinite series ^ l/n2 converges, so that for 

n*»l 

sufficiently large N , 

00 

£ l/n2 < c2/2 

n*l 

whence 

00 

I I fnW - I2 (1/n2) < I 1/1,2 <<,2/2 
n«N n-N 

Now let k < N , then the function f^ : X —> [0,1] 

is continuous, thus there is a TJ^ e U x such that for 

y « ok 

1 fK(X> " 1 < [2(Ntol»V^ 

I M X> - fk< y) I 2  
< a2 

? 2(n-l) 

N-l 
Now let U « U U. , then for y e U 

k-1 K 
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" I f n(x) - fn(y) Is tt1 I fnW - fn(y) Ig ^  i  A n v ~  A n v , y '  '  £  

n-1 n n#»l n 
T 

00 i j -, / __ \ ~ /„\ i 2 

+ I I f n(x) - fn(y) I 
n^yw 

n»N n 

< (N-l) g„g +d. g2 

2(N-l) 2 

Hence, p (f{ x),f(y)) < <? which implies that f is 

continuous. 

Finally, we must show that f is an open mapping. 

Let TJ be open in X and let x e U , then there 

exists B*,B^ s 8 such that 
'!'• J 

xj B ± c B i c B J c U  

by the normality of X and the fact that ft is a basis, 

Thus, the pair (B±,Bj) belonging to P , say 

(B̂ Bj) - (B" , B") . Then 

fn(x) - fn(Bj) - 0 

and since X - U c.X - Bj 

f„(X - U) - f„(X - B") - 1 

so that for y « X - U 
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p (f( x),f(y)) -

> 

Let V » S (f(x),l/n) be any open sphere about f(x) 

of radius 1/n . If z e V then p (f(x ), z) < l/n 

p (f( x), f(f-1(z))) > l/n , a contradiction. Thus 

f""1(V) c U and x e V c f(U) , Whence, f(U) Is open 

since It contains a neighborhood of each of its points. 

Consequently, we have proved that f Is a one-to-one 

continuous open mapping, hence f Is a horaeomorphlsm, 

DEFINITION 5,6 The diameter of a subset A of a metric 

space (X,p) is 

Using this definition and some intuitive reasoning, 

we would now like to determine the diameter of the 

HUbert Cube. 

and f-^z) e U , for if not, then f^ss) e X - U and 

sup fp (x,y) J x e A and y c A} 

THEOREM 5.5 

The diameter of J4® is . 
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Proof * 

Consider the following two sequences x • Cl/n} 

and y » t-l/n] . Clearly, x and y are members of 

J® . Now, for each n , these points of J05 represent 

sequences that are at maximum distance from each other. 

Hence, x and y are at maximum distance from each 

other in J0® and the distance between them will be the 

diameter of J® . 

P (x ,y) « [ £ (l/n - (-l/n))2] ̂  « [ £ k/n2] ̂  

n«l n«l 

O 
If one now considers the Fourier Series for f(x) » x 

on [-7r,ir3 we get 

X2 . + 4 I t-^)n 

n-1 n 

let x m r , then 

TT2 m + 4 £ l/n2 

n«l 

.2 00 

^T~ * ^ X 1/n2 T~ 
n«l 

Therefore, p (x ,y) « 



APPENDIX 

The following is a list of lemmas and theorems that 

appear in this thesis without formal proof. Below each 

such lemma or theorem is the location of the proof, if the 

reader desires such proof. Since all books appear in the 

List of References, only the name of the author, theorem 

number, and page are given below. 

1. Lemma 1,1 

Kelley, Theorem 4.8, pg. 120. 

2. Lemma 2.1 

Baum, Lemma 5.12, pg. 127. 

3. Lemma 2.2 

Kelley, Theorem 4.5, pg. 116. 

4. Theorem 2.7 

Kelley, Theorem 4.7, pg. 118. 

5. Lemma 3.1 

Hall and Spencer, Theorem 14,6, pg. 109. 

6. Lemma 4.4 

Kelley, Theorem 1.21, pg. 54. 

7. Theorem 4.4 

Hall and Spencer, Theorem 7.8, pg. 44. 

8. Lemma 5.1 

Baum, Theorem 3.24, pg. 88, 
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