Southern lllinois University Edwardsville

SPARK

Theses, Dissertations, and Culminating Projects Graduate School

1967

Valuation theoretic approach to ideal theory

Janet Mary Corcoran
Southern Illinois University Edwardsville

Follow this and additional works at: https://spark.siue.edu/etd

Recommended Citation

Corcoran, Janet Mary, "Valuation theoretic approach to ideal theory" (1967). Theses, Dissertations, and
Culminating Projects. 11.

https://spark.siue.edu/etd/11

This Thesis is brought to you for free and open access by the Graduate School at SPARK. It has been accepted for
inclusion in Theses, Dissertations, and Culminating Projects by an authorized administrator of SPARK. For more
information, please contact magrase@siue.edu,tdvorak@siue.edu.


https://spark.siue.edu/
https://spark.siue.edu/etd
https://spark.siue.edu/graduate
https://spark.siue.edu/etd?utm_source=spark.siue.edu%2Fetd%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://spark.siue.edu/etd/11?utm_source=spark.siue.edu%2Fetd%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:magrase@siue.edu,tdvorak@siue.edu

VALUATION THEORETIC APPROACH TO IDEAL THEORY

A Thesis

Submitted to the Graduate Faculty of
Southermn Il1linois University
Edwardsville, 11linois
in partial fulfillment of the
requirements for the degree of
Master of Science

mn

The Department of Mathematics

by
Janet Mary Corcoran
B_A_, Southern Illinois University
Edwardsville, 1Hllinois, 1965

June, 1967



ACKNOWLEDGEMENT

The author vtlshes to express her sincere appreciation to
Professor George V. Poyrtor for his guidance and Interest in this

thesis,



TABLE OF CONTENTS

Acknowledgement - - - - - - - - - - - - - - - - -
Introduction

Chapter I _ _ - _ - _ - - - - _

Chapter B0 - _ - - - _ _ _ - - -
Chapter 111

Appendix

Selected Bibliography - - - - - - - - - - - - - -

42

59



INTRODUCT ION

The theory of ideals in a conmutative ring with identity forms
a significant portion of the theory of such rings. Formally the
theory of ideals is developed using the definitions and the properties
of rings. A particularly elegant development of ideal theory uses
the concept of valuations. In Chapter 111, it is shwn how the
theory of i1deals can he expressed iIn terms of valuation properties.

In order to consider this valuation approach to ideal theory,
Chapter 11 is devoted to a brief development of the definitions and
results of valuation theory which are used in Chapter 111. The theory
of valuations is developed using the concept of a place of a field.
It 1s showmn that there exists a 1-1 correspondence between places of
a field and equivalent classes of valuations. Because of this, the
terms "valuation™ and "‘place™ are sometimes substituted for each
other, but the meaning remains clear from the context. Also it is
shown that there is a correspondence between valuations and prime
ideals. Hence these terms are also interchanged at times.

The material in Chapters 11 and 111 requires some knowledge of
abstract algebra. To facilitate ones reading of Chapters 11 and 111,
Chapter 1 has been written so as to present the necessary algebraic
definitions and basic results used in the later chapters. These
results will not be proven. A complete discussion of all of these

results can be found iIn any abstract algebra text.



The symbols used are standard notation. The relations of sets,
elements of sets, etc., are all denoted by standard notation. All

other notation will be defined as it appears.



CHAPTER 1
ALGEBRAIC DEFINITIONS AND PROPERTIES

A semigroup iIs a set and an associative binary operation. A
semigroup S has an identity e If for every X e S, ex » Xe » X.

A group G s a semigroup with an identity e such that for every
X e G, there exists x_l e G such that xx_l « x_lx ¢ e. IF for every
a,beG, ab» ba, G is said to be coormutative.

A group G In which every element can be expressed as the
power of some element is called cyclic. For ae G, te smallest
integer n such that a2 « e is called the order of the element a.

The integers under addition form a group. The rationals (to)
under multiplication form a group.

A nonempty subset H of a group G is a group 1If H contains the
identity and is closed under the operation. If H is a subgroup of G
and a i1s an element of G, ten the set aH={ah ] h e H} 1is called
a right coset. The set Ha * {ha ] h ¢ H} is a left coset. If G
is comutative, these sets are equivalent. A subgroup is Invariant
it and only iIf the right coset determined by any element coincides
with the left coset determined by this element. Therefore there iIs
only one coset decomposition of G for an iInvariant subgroup H.

IT H is Invariant, then xH)Y]Q - XHyH « xyHH « xyH.

Hence the set of cosets is closed under the group operation. The
collection of cosets, denoted G/H, and the group operation of G

form a group- This set G/H is called the factor group of G relative
to H.



A mapping of a group G Iinto a group G" is called a

homomorphism if the following property holds: for every X,v e G,
T&y) - TOOT(Y)-

IT T 1s a honomorphism of G onto G*, then G" is called a homomorphic
image of G. If f i1s 1-1 and onto, then T Is an isomorphism of G
onto G*,

The homomorphism of G onto 1ts factor group G/H which maps a e G
onto aH i1s called the natural homomorphism.

The set of all elements In G such that a homomorphism maps them
onto the i1dentity of G* i1s called the kermel of the homomorphism.
The mapping is an isomorphism 1If and only if the kermel contains only
the identity of G_

A ring R 1s a set and two binary operations called addition
and multiplication such that

1) R under addition is a commutative group
i1) R under multiplication Is a semigroup
iil) The distributive laws
a(b + ©) > ab 4- ac
(b +0c)a»ba+ca
hold.

A ring iIs said to be conmutative If the multiplicative semigroup Is
commutative. R is said to have an identity if 1ts multiplicative
semigroup has an identity.

Examples of rings are the rational numbers and the real numbers.

A ring is called an integral domain if it contains no proper
divisors of zero. A ring is a division ring If 1t contains more than

one element and the nonzero elements form a group under multiplication.



A division ring in which the multiplicative group Is commutative is
a field.

Let F be a field. Suppose that 1 is the multiplicative identity,
and O is the additive i1dentity. Then the smallest natural number m
such that ml = O is called the characteristic of F. If no such
Integer exists, then F iIs said to have characteristic zero. All fields
of characteristic zero contain the integers and hence the rational
numbers. If the characteristic m ™~ 0, them m is a prime.

Consider the set ofaall polynomials In an indeterminant X with
coefficients from a field F. The set of such polynomials F[X] is a
ring. An element which satisfies a polynonial in F[X] is said to
he algebraic over F. IFf for some element, there does not exist a
polynomial in FFX] which it satisfies, then this element is said to
transcendental .

A homomorphism of a ring R into a ring R* is a mapping T of R
into R* such that for every a,b e E

f@a + b)y="1f@ +T(b)
f(ab) « f(@f(b).-
IT fis 1-1 and onto, it is called an isomorphism.

A ring R is said to be imbedded In a ring B 1f E contains a
subring R" isomorphic to K. The ring E* is called an extension of R.
Similarly a field K is an extension of a field k.

Let K be a given extension field of k, ard let S be any set of
elements in K. There are fTields which include k arid S. Hie
intersection k(S) of all such fields is a field. k(S) B said to

obtained from k by the adjunction of the set G. Extensions by the

adjunction of a single element are called simple field extensions.



Let F be a Field, and V a nonempty set on which there is defined
an operation of addition. The elements of F and of V may be called
scalars and vectors, respectively. Assume that there is defined on V
a scalar multiplication by elements of F. The set V is then called
a vector space over the field F if the following conditions are
satisfied:

i) V is an abelian group with respect to addition
1Im) aX+Y) « X +ay foraefF, X)Y eV.
i) (@ +b)xX —-axX +by for a,b e F, Xe V.

iv) a(xX) « (aX, for a,b cF, Xe V.

V) IX=X where 1 is the identity of F.

Aset x», X2,. - _, X* of vectors of a vector space V is said
to be linearly dependent If there exist elements an, a2»« - ., &

of F, not all zero, suwch that a)?)& +a]'x7,+ - - +anxn -0 .

IT the set is not linearly dependent, it is said to be linearly
independent. A set of vectors of a vector space form a basis of the
space 1T the vectors are linearly independent, and It every other
vector of the space can be expressed as a linear combination of these
elements. A vector space V is said to have dimension n if V has a
vector basis consisting of n elements,

An extension field K of a field k i1s called a finite extension
if the vector dimension of K over k is finite.

Let R be a ring. A nonempty set A of R is called a right ideal

i) aeA ad b eA implies (a- b) e A (module property)

ii1) aeA implies ar e A for any r e R.



Similarly a left ideal L is a nonempty subset of R with the module
property and such that a e L implies ra e L for any r e R. Finally
a set A is a two-sided ideal, or an ideal, 1T A Is both a left ideal
and a right ideal. ITf R is commutative, then these types of i1deals
coincide. Since this thesis considers only commutative rings with
Identity, we will speak only of ideals.

In every ring R, the set consisting of only the zero forms
an ideal, called the zero ideal. The ring R forms an ideal, and it
is called the unit ideal.

IT In an ideal, ewry element is of the form ra + na where
rc R, nis an integer, and a is iIn the ideal, then the ideal is
said to be generated by a. Such an ideal is called a principal ideal
and will be denoted by Xa) where a is the generator. Thus the zero
ideal i1s a principal ideal.

An ideal A is a proper ideal of R if A 1s properly contained
in R, and A Is not contained properly In any other proper ideal.

A is said to be maximal if A is not contained properly In any other
proper ideal. In a ring with identity, every proper ideal is
contained In a maximal ideal.

Given any two ideals A and B, their sum A + B and their
product AB are also ideals. The ideal B iIs said to divide the ideal
A if and only if B contains A.

For principal ideals in comutative rings with identity, (&)
divisible by (b) implies that a = rb for some r e R. Thus the concept

concept.



An ideal P is called a prime ideal 1f and only if for every
ab e P where a1 P, then h e P. The unit ideal is always prime.
The zero ideal is prime if and only If the ring Is an integral domain.
Any maximal proper ideal P in R is a prime ideal and R/F is a fTield.
IT R/P is a field, then P 1s a maximal ideal. An ideal is said to
be primary if and only if for every ab cP and a t P, then b e P
for some natural number n.

The ideal (A,B) generated by the union of two ideals A and B
is the greatest common divisor (gcd) of A and B, since it is a
common divisor Which is divisible by every common divisor. It is
also called the sum of A and B because it contains only elements
which are sums of elements of A and B. The gcd of two prime ideal3
is the entire ring.

The intersection A O B of two i1deals A and B i1s called the
least coomon multiple, and every other multiple is divisible by i1t.

Every i1deal In a conmutative ring with identity can be
expressed as the iIntersection of a finite number of primary ideals,
iT every non-empty collection of ideals of the ring contains a

maximal element.



CHAPTER 11

VALUATIONS

The study of valuations is somewhat facilitated by considering
first the subject of places of a field. Let R be a conmutative ring
with identity. A unit of R is an element of R whose iInverse is also

in R.

DEFINITION 2.1 A ring R is a local ring 1f and only if the non-units

of R form an ideal iIn R.

THEOREM 2.1 A ring R is a local ring 1If and only iIf there exists

exactly one maximal ideal iIn R.

Proof: Suppose R is a local ring. Then the non-units of R form an
ideal A in R. A i1s maximal since any ideal containing A properly
contains a unit and is the ring R.
Suppose A is the only maximal ideal in R. Let a be a non-unit

of R. The element a generates a proper ideal since iIf for some x in R
ax=1, tten a is a unit. Let @) be the i1deal generated by a. Then
(a) i1scontained In A since every proper ideal Is contained In a
maximal ideal. Hence A contains the ideals generated by all non-units.
A does not contain a unit since A is proper. Thus A contains only the

non-units of R. Therefore R i1s a local ring.
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DEFINITION 2.2 Let R be a subring of a field k, R is a valuation ring

in k if at least one of every pair of inverse elements of k is in R.
THEOREM 2.2 A valuation ring R 1s a local ring.

Proof: Let R be a valuation ring in k. It must be shown that the set A
of non-units of R forms an ideal. Choose a,b e R such that (a +b) is
aunit In R. Then (a+ b) and @ + b)_1 are iIn T? Suppose a,b + O.

IT one equals zero, the result is trivial. Suppose that a/b e R.
Then XI + 9 eR implies (—>—) e R implies () eR. Thus b Is a unit

of R. If b/a E R, then a similar argument shows that a is a unit.

Thus 1If a and b are non-units of R, then @ + b) is a non-unit.
Let a,b e R and ab be a unit of R. Then a ~NeR, and

aa”™"1 « bl. Hence b* eR. Also, a**b «a1and a1 ER.
Thus 1T a Is a non-unit, ab is a non-unit for every b e R. Hence A is

an ideal In R, and R is a local ring-

DEFINITION 2.3 Let k be a field. A place of k is a homomorphic
mapping ¢ of a subring R of k into a field A such that the following
conditions are satisfied:

D ifx£fk, xI R, then /x eR and $(I/X) - Q

i) $) ¥ O for some x in R.

THEOREM 2,3 To every valuation ring R in k, there corresponds a place,
and conversely, to every place ¢ of k, there corresponds a unigue

valuation ring-



Proof: Let R be a valuation ring in a field k. Let Abe a homomorphic
mapping of R into the field A » R/A where A is the maximal ideal in R.
Suppose x e k and x 1 R. Then I/x e R and /X is a non-unit of R.
Therefore 4(1/x) » O. Surely, 1e R, and <>(1) 4 0« Consequently §
defines a place of k.

Now let 4 be a place of k, ard R be iIts ring of definition.

Then x e k, x 1 R implies 1/x e R. Therefore for every 1/x e k

at least one is in R. Consequently R is a valuation ring.

In the remainder of this paper, the valuation ring of a place 4

will be denoted by R, -

Ifaek, ada iR, let4(@ » ® . Then 4 is a homomorphic
mapping of R into AD {»} - The following are immediate consequences

of this change in definition:

i) ITA4) » ® andd(y) *° , then (X +y) »
1) I <£(x) "" ® and <>(y) 4 O, then 4(xy) =» ;
1ii) IF x40, then $) « Oif and only if $(I/x) ™

THEOREM 2.A The units of the valuation ring R® of field k corre -
sponding to a place 4 are fully characterised by 4(@) 40 and 4(a) 4 %;

the non-units, by 4(@) » O.

Proof: Suppose (&) 40 and 41(@) 4 ». Then 4(@) eA and ae R -

IFatiR, then 4@ ad 4@ ~Q Butr@ 40, Thus a e R,

and a iIs a unit of R.
Suppose a is a unit of R. Then a, a* eR implies 4(@) 4% and
4a*) 4%  Since 4 is hoaomorphism 4(a)4(a «4(@a *) ¢ 4(D) = I«

Thus 4(@) 4 0, and4(a ™) 4 O.



Suppose two places are defined on a subrirg of a field k. These
places are said to be equivalent 1If and only iIf their valuation rings
coincide. Places which are isomorphisms of k are called trivial
places of k.

The existence of places can be shown using the following lemma.
LEMMA Let R be a subring of a field k, @ntaining an identity, ard
let B be a proper ideal in R. Then for any element x of k at least

one of the extended ideals R[X]B, R[1/X]B is a proper ideal of R[X],
R[1/X] respectively.
Proof: Suppose neither R[X]B nor R[I/X]B is a proper ideal. Then

R[XIB - R[X] ad R[I/X]B - R[1/x]. Since 1 e R[x] and 1 e R[1/x].

n -
(&) 1= ] a-x where a. e 3, O £1 £n
101
@) 1 - Fbx» where b. e B, O£ jJ £m.
Jj-0 3 3

Suppose (1) and ) aie of least degree and m £ n.

Multiply (1) by @ - bo) ad (2) by a™xi;

1-bo-Q@-b>a+*7**+ Q -byax

12

- b@%xn » anbi)(n"—1 + - +_anbm)(n m )
Thus 1 -bg- A-bao+ - *+(I-braJX0 1+ _ _+3apbxnm
n—jy i
or 1 - | C.X where c. e B.
10 1

But (D was assumed to be of least degree. Consequently at least one

of the extended ideals is a proper ideal.
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THEOREM 2.5 Let R be a subring of a field k, @ntaining an identity,
and let A be an ideal in R, different fron R. Then there exists a

place $ of k such that R* C. R and C A where A" is the ideal of

non-units of R -

Proof: Let M denote the set of all subrings S of k such that RCS
and SA + S. M Is non-empty since R e M. Every totally ordered subset
of M has an upper bound in M. Hence M has maximal elements.
Let L be a maximal element of M. Then L has the following

properties:

i) RCL, LA+L ;

if) IFL" is any subring of k such that LCL 1, then

L*A — L".

Let R® be the union of the elements of any totally ordered subset of M.
Consider the case where R™ « L. Let P be a proper ideal in R such
that P » LA. If x ek, and if L™ - L[X], L'=L[1I/X], then at least
one of the following relations must hold; L°P « L*, L'"'P ¥ L"". Since
L is maximal, either L » L" or L *L'"; 1.e. either x e L or I/x e L.

Hence L is a valuation ring to which there corresponds a place of k.

An Important consequence of the existence theorem is the
following theorem dealing with the extendability of a place of a field

to an overfield.

EXTENSION THEOREM IFf k is a subfield of K, then any place of k can

be extended to a place of K.
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DEFINITION 2.4 Let k be a Field, R be any subring containing the
identity, and suppose a iIs an element of k. a is integral with respect

to R 1If and only if a satisfies an equation of the form

a"+ag,a™~"+ - _+a =0
I n
where a» eR, 1« 1,2,. - _,N.
/
Divide a" +a,ct! * + _, _ ﬁn-oman** Then

_ -1 ‘e . -(n-1)
a+a.+ a-,« +. Ta“a « O

a= -1 - ana_(n_ I)_

e =i
Thus If a is integral with respect to R, ae R[a or, equivalently,

a is a unit in R[a *1,

THEOREM 2.6 a is integral with respect to R 1If and only if for every
place ™ of k for which the mapping ¢ restricted to 1 (4] R) is finite,
<>(@) 1s also Tinite.

Proof: Let a be integral with respect to R, and let » be a place of

k for which |R is finite. Suppose $(<*) "0 « Then$(a 1)» 0. Now

1 -
a*+a-en_*+___+a « O and I+a-ﬁl—-- -+aanmn>0.
4>(1+a1a"1+_ _+a%~1) -1 +0+ __ .+ 0 +9 -#(0) - Q

Hence <j>(a) 1s finite.
Suppose a Is non-integral with respect to R. Let A be a maximal
prime ideal of R[a_l] containing a l. Let f be the natural homoroorphism

of R]ot_l] oto R[a_l]/A- This homomorphism is non-trivial. Thus it



determines a place ¢ of k[a *]-. For every such place A, ¢ restricted
to R is finite, since$ restricted to R[a. is finite. Further

» F(@'") e F(A) = 0. Hence <j>(a) - Hence the theorem.

The kermel of$ in R[a®] B A. The kermel of $ In R Is a prime
ideal and is the iIntersection of R and A. This i1deal is a maximal

ideal iIn R. -

THEOREM 2.7 1IF O is the set of all elements of k integral with respect
to R, then Ois a ring. The integral closure of O is 0. O is the

intersection of all valuation rings of k which contain the ring R.

Proof: Let a be In the integral closure 1 of O. Then for every
place $ of k,<Kc») is finite when $ restricted to O is finite. But
an element of O is integral with respect to R. For every ™ of k for
which $ restricted to R is finite, <>(X) Is finite. Hence the places
for which $ restricted to R is finite are those where $ restricted
to O are finite. Thus for such $ , <(<*) Is finite. Hence a is
Integral with respect to R. Since 1 is contained in O and O is
contained inl, 1=0.

Let 1 be the intersection of all valuation rings of k which
contain the ring R. 1l isaring. If xel, then x e R for every .
Thus $(X) is Finite over R and <>(X) is Finite for x e R™ _

Therefore x e O. Then for every » finite over R. $(X) is finite.
Consequently x e R™ for every 4. Hence the iIntersection of all

the valuation rings of k is O.



Again before considering valuations, consider the concept of an

ordered group.-

DEFINITION 2.5 The group G is an ordered group if It contains a
semigroup S with the following properties:

i) asaic Sforall ats;
1 1 1
iD 6-SU{1} Us" wheres - &~ \ s eS}.
DEFINITION 2.6 An ordered group is a completely ordered set by the

order relation a <b 1fand only ifab eS.

The definition is symmetric, with respect to left and right
multiplication, since
ab ~s S implies b *a *b "™@*)b eb Sb(" S,
and similarly

b*aeS implies ab ™ e S.

Transitivity can be showmn, since a <b, b <c implies

ab>*cS, bc* e S implies ab™ *» ac * eS implies a < c.

Completeness follows directly from the defnition of ordered group
since for any a,b either ableSorab 1 ®1 or ab 1 eS 1 always
holds, and hence either a < b, a = b,or b < a.

The complete ordering of an ordered group G has the following
properties: For a,b,c,d,e G

i) a<b implies ac <be, ca <cb;
i1) a<b, c<d Implies ac <bd;
1

iii) a<bimpliesb ~ <a *;

iv) a<1 ifadonly ifat S.



Let ¢ <« G"U {3} where G" Is an additive ordered ahelian group
such that the following properties hold:
1) for every x in G, X +» » »

ii) forevery xinG!, x <@ _

DEFINITION 2.7 Let k be a field. Let G be the set defined above.
A valuation of k Is a mapping v of k into G such that
1)) vO) »® if and only if x - 0O,
1) vixy) - W) + v(y), for all x,y in k;
i) vx +y) >min (M), v(y)} , for all x,y in K.

The multiplicative group of k Is mapped Into group G* and in
most cases will be the only values considered. For any x in kK, \(X)
is called the value of x iIn the valuation v.

A valuation v is called non-trivial 1f v(@) 4 Ofor some a In k
otherwise, v is called trivial.

Let O be the zero of the group G*, Then the following are
immediate consequences of the definition.

v(l) » Osince v is a homomorphism.

v(-D » O, shce O=v(D) »v(-I"-D * v(-D) + v(-1) and G is

totally ordered.

v(a) «v(-a),, since v(-a) » \(-1a) =v(-1) + (@) » Wa)-

v@) = -v(a, since v(l) «v(@a *) « a+v@ * »0

and hence ~v(@) = v(@a 1)*

v(e)=0 if e is a root of unity. This Implies that the only

valuation of a finite field is the trivial valuation.

v(ix —y)»min{ v(x), v(y)}. Forv(x—=y)db min{v(x), v(y)}""
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v < V() inplies v(x + V) Bv(X).
Proof: v(x +y) > mint v(X), V(¥)> « V<X).
But x — (X+y) -y So vQ)J* min{ V(x +y), v)>.
v(X) > v(X +Yy) sime by assumption v(xX) < () -

Thus v(X) « V(X +Yy).

Let k » Q be the field of rational numbers and let Q" denote the
multiplicative group of Q. Let p be a fixed prime number. Every
rational number a can be written a » pb where e is an integer and b
is a rational number prime to p.

Define a mapping Vp of QF into Z, the additive group of iIntegers,
such that

V() =¢e, if x » pSb in Q".
Choose any x,y in Q", X » pRb, y — pfc/ Then

VAGY) *VP(PHC) ¢ e + F e VGO 4 p(y)»
Thus VP satisfies the second condition of the definition of a
valuation.

Again consider x and y as given above. Assume e < f. Then

VP(X +Y) —Vp(ﬁ(b + pf °c))-

IT O +pfFec) B prime to p, WX +y) —-e. 1T (b+p ©ec))» mpr
for sore m and r, then vo(X +y) =e + r. Hence v(X + y) 2 minlvQ)v(y))
Thus the third condition of the definition is satisfied.

Define VP(O) -

The mapping Vpis a valuation of Q into ZU {»}.
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Using multiplicative notation, a valuation may be defined as
follows:
A valuation of a field Kk Is a mapping v of k Into an ordered
group G with zero-element O, swich that the following properties hold:
i) v(@) >0 for all aek, (&) » Oif and only if a«0;
i) v(@b) « @v(b) for all a,b e k;
iif) v(a +b) <v(@ +v()- ’

Using this notation, one may consider ordinary absolute value as
a valuation of the real numbers into the non-negative real numbers.

Consider the set ={x] xek, v} >0 _ The set R™ forms
aring. Ry iIs called the valuation ring of v. Ryis a valuation ring
because for every x e k™ (the multiplicative group of K), either v(xX)>0
or v(I/x) > O and hence either x or 1/x belongs to The relation
Jrlx, defined by the condition that there exists a z E R™ such that

X — yz, is equivalent to v(xX) » v(Y)-

DEFINITION 2.7 Two valuations are called eqguivalent valuations 1If and

only if they have the same valuation ring.

The group of units of Rv is the set Ix| xek, ) -G ;
the maximal ideal A of non-units of Ry is the set A ®f x] x e K,v(X)>0}.
It has been shown that to every valuation ring there corresponds
a place. For every valuation v, the set Ry — ] xe k, v(xX) >0} is
a valuation ring. To RV, there corresponds a place. This place
corresponds to a class of equivalent valuations which have R, as their

valuation ring.



Conversely for every ¢ of k, there corresponds a unique valuation
ring R43 - Let A be the maximal ideal iIn R(.p , and let U be the group
of units of R< - Denote the quotient group by k/U and write the
group operation additively. Let v be the natural homomorphism of k
onto k/U. For every a»b ek, v(@) »ab +U« (@a +U) + (b+ U >

v(@) +v(b). For ever a,b e k, and if v(@) v(b), then

v@+b) » @+ b) + U=all +_ +U
=@EW + @+ + 0

& vl + a) +v(a).-

But v(@) < v(b) implies b/a e R, , and hence (1 +§) e R$ - Therefore

9
vl + 5)30_ Consequently v(a + b) > v(a).-

All that remains is to show that k/U is ordered. But

k/U - AZU U WU OA/U where A1 - fa] a? e A} and A/U,
U/U, and A */U are pairwise disjoint. Let A/U be the required semi-
group. Then for every a e k/U, a(A/U)a A/U since the product
of a non««unit with any other element is a nonunit. Therefore k/U
is ordered, Vv is a valuation of k with valuation ring R<D - Thus for
every place ¢ of k, there corresponds a class of equivalent valuations.
DEFINITION 2.8 A valuation v is said to be a valuation of rank 1 if
and only if the valuation group Gf can be mapped order-isomorphically

into a subgroup of the additive group of real numbers.
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One may consider equivalence relationships for valuations of
rank 1. Let v and u be valuations of a field. Let G be an additive
group of a field F; and let R be the real numbers. Suppose
i) u iIs not a trivial valuation
1) u@) <O mplies v(a) <O0.
Substituting u(l/a) far u(a) in (i) yidds u(a)/> O. Therefore v(a)>0.
Suppose u(a) » 0. By (i), tere exists b e G such that u(b) > 0O,

But then uCal®) > O implies vCal®) > O implies v(&) } -v(b) for
n
any n. Letting n-» , V@) > 0.
Since a similar situation arises for 1I/7a,u(@) =0 implies v(a)®0.

Additional relationships derived from (i) and @i) are the
following:
u(@) < ttt(b) implies v(@) < v(b)
u(@ » u) inplies v(@) - v(b)
u@) > u() inplies v(@) > v(b).-

Since u is not trivial, there exists a fixed ¢ e G such that
u(c) =O. For any given element a e G, there exists a real number r

such that u(@) ¢ ru(c). For any rational number n/m > r,
u(@@)< = u(c) mplies u(@®) < u(c mplies v@t) < v(c).
Hence v(a) < ﬁv(c). Similarly if r > n/m, then u(@) > o u(c) Inplies
v(@) > EV(C) - Therefore v(a) » rv(c).
Now u(@) -ru(c) and v(a) - rv(c) imply v(a) = au(@) where
a ,, \L/j(f(gg Since ¢ was a fixed point In G, then v(@) - au(@) holds

for every a e G. Thus v can be obtained by first applying u, then au,



Applying these results to valuations of rank 1, idetify G with
k®, the multiplicative group of k. Then two such valuations of k, in
which the same inequalities arise between elements of the fTield, are
multiples of each other. Thus one obtains the following definition.

Two valuations of rank 1, uand v, are called equivalent

if and only if u » av for some a sR.

A c lass of equivalent valuations consists of all multiples of some
Tixed valuation.

Thus far the field k has been any field. It was mentioned that
the only valuation of a finite field was the trivial valuation.
Further restrictions to the kinds of valuations permitted are con-

sequences of the following definition,

DEFINITION 2.9 A valuation v is non-archimedean if and only if for
some multiple m of 1, \(m) ™ O. Otherwise, v is said to be
archimedean.

Consider again the example of the rational numbers.

THEOREM 2.8 Any non»trivial, non-archimedean rank 1 valuation of Q

is equivalent to a p-adic valuation for some prime p.

Proof: For every integer n, Un) » 0. If.v(n) — O for every integer,
then v is trivial. Thus there exists an integer b 4 O such that

v(b) > 0. Let B={ b] v(b) =>0}. B is an ideal iIn the ring of
integers Z. Suppose b,b® e B. Then v(L — b™) > min {v(b), v(fc)}
which implies v(b — b") >0. Therefore b - VV tB. Also suppose ce Z2»
and b e B, Then v(cb) « w(c) + v(b) > 0. Conseguently cb e B, and

B Is an ideal.
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Let a,c £Z such that a,c 1 B. Then v(a) - O- v(c) which
Implies that O « v(@) +v(c) % v(ac). Therefore ac Tt B. Thus B Is

also a prime Ideal Iin Z. Hence B=(p) whae p Is a prime.

Since p e B, v(p) > 0. Therefore let v(p) —s- Let n he any
integer. Then n=n"p where k O and (n",p) « 1. Thus n" 1 B and
v(n®) - Q4 v(nN)=v(n") + k¢p) — ks. Hence v is a multiple of the

Ve

p-adic valuation determined by p.

THEOREM 2.9 Up to equivalence, the field Q of rational numbers has only

one archimedean valuation, the usual absolute value.

Proof: Let n, n"> 1 be integers. Then n* « ag + a™m + __ _ a’\nIT

where O < &< n, 4 0.
v(n®) <v(@ +vCaj) v + . -+ v@) v
where v Is any archimedean valuation of Q. Since O < v(a.) «\<< n,

v(n™) <Al +v(@) + -. +v@?™] < nk + Dmax{ 1, vE)"} -

n® >L nk. Thus
log

k+ log n" implies v(n") <n( log nt + 1) max €, \Wn)le n }_
log n log n

Now replace n* by (n")". Let log n"/log n - t. Thus
v(n™)r <n(rt + Dmax {1, W)} _

v(n") <[n@t+ D] {max 1, von)y*7} -

Consider the limit of the right member of the inequality as r-*» _

v(n®) <max {1, VCn)"7} _



Since v is archimedean, nf can be chosen so that v(n")> 1; hence

1 <v(n) £v(n)f.

Thus v(n) » 1, 0 interchange n and n*. Then
1 1
v - v(n")wg=

for any two positive n, n". Then log v(n)/log n is a positive real
number s independent of n and v(n) « n’_ Hence. v_(a) - S_]a_].c for
every rational number a. Thus v iIs a power of the absolute value

valuation.

Let Vis Ve - - 5 Y be a finite system of non-trivial
inequivalent valuations of rank 1 of a field k. It will be shown
that these n valuations are independent In the sense that none can

be expressed in terms of the others.
LEMMA There exists an element a g k such that v(si) > O but
v(@) <O for i »2,3,...,n._

Proof: The proof is by induction on n. If n =1, the assertion is
trivial. Suppose n « 2. Then since v* and v* are inequivalent, there
exists b ¢ k such that v¥(b) <O and v2(b) » O. Similarly there exists
C e K such that v™(c) 2. 0 ad (&) * °*

Since k is a field, c/b < k* Let a » c/b. Then

Vjca) - vi(©) - vb) >0 ;

v2(@) «\w(c) - (b)) <O ,

Thus the element a has the required property.



Suppose the assertion is true for n — 1 of the n valuations.

Then there exists b e k and ¢ ¢ k such that

() >0, vb) <O a-23,...,n-D

vl(c) =0, vn(c) <O0.
Let a» b + c where r i1s a natural number. Consider two cases.
Case 1. vn(b) <0,

v@=vb +oc)> min{d v(b ), V(©O)} implies
vi(@) > 0.
va -vb +c) mid vb ), vVo} -

For sufficiently large r,

v D»» b)) <v™(c) implies
Vi(a) » Vi(br +cCc) » Vi(b") < 0.

Also vn(a) > vn(br 4- c) > min {vn(br), vn(c)} -
For sufficiently large r

vn(a) « vn(br + Q) _-.»*bvn(b')< 0.

Therefore a satisfies the assertion.

Case 2. Vn(b) 0.

v Ca) e v + o) p min {\" b ), v )} implies

vi(@) > 0.
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via) » Ab* + c) > ran {vb*"), (O}
- ve(b") <O for sufficiently large r..

v@ -y 0" +o)>min{v.®), v O} -

- vn(c) < O since vn(c) < vn(br),

Hence a satisfies the assertion.

LEMMA 2 There exists b e k such that v~h) O and v.(b) > O for
i C 2y3f.»e
Proof: Prom the preceding lemma, there exists a e k such v(@) > O

and vCa) <0. Letb» (a+ I)/(aIT + 1) whae r iIs an integer.

Then since v,(1)=0,

vb) »viG—" > va+ 1) -va*+ 1)
a +1

-v D) -va(D) » Q
Since V(@) <v.(1),

vi(b) « @ + 1) —-vr@ + 1)

- @) - @) » -T-Dv@) >0

for some r greater than 1.

THEOREM 2.10 Approximation Theorem. Let 6™ be n elements
of k. Then for every real e > 0, there exists a { ksuch that

vva -8 >e, i« 1,2,» _,n.
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Proof: From Lemma 2, there exists bl’ bz. S bn such that Vi(bI) -0

and v (b D> 0. Consider c. » i
3 b, + l:9+ ... +Db
I n

VEHCP "* VIADEA VD] + eee + B ) 'O

and

ViiICi) « ViR —vojt + . +bn) «VJCiI5 > o

Also -1 >0.

Since the valuations are of rank 1, there exists an integer n

such hthat both of the following inequalities are true:

nvjy(: - 1) + 8™ >c

nviC ™ *F
Now let »1-@Q-°"D% Then

VIl - 1) »nv™M -cj) >nv @A -c>.
Hence VIR ~ AN F VENIN K e or Vngnag ~ * ox

a; = 1- Q- c'i')n = c’i> T(c) where F(c) iIsa
polynomial with coefficients in k. Thus

VJ(ai) « nv3(ci) 4 vj(f(ci)) which implies

Therefore > e.
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Let a ™ 1al +E%ll. + .. +8nan_

(@ - 6D »viBi(@ - 1) +B @) 1+ j

>mln ©1(6.(a1 - 1)), (OO0}

> e.

Corollary A relation of the form Jc™Ca) =0 with real can hold

for all a e k only if all the c™'s « O*

A valuation of rank 1 induces a topology, called the v-topology,
on k defined by neighborhoods of zero: {a[ jv(@)] * e} where e> 0
is a real number# The n elements 8I’ Of’#"’ On of the field k
can in their corresponding v -topology be approximated to any degree
by a single element.

Valuations can be used to introduce the concept of completion

for fields. The definitions and theorems involved follow closely

those used in analysis.

DEFINITION 2.10 Let K be a field with a rank 1 valuation v. A
sequence {&~} , k=1,2, _._. 1is said to converge in K (relative to v)
if there exists an a e K such that for e >0, there exists an integer N
depending only on e such that v(a - a)< £ for all n >N. Then a is

unique and is called the limit of {&"} _ Ifa- 0, {&.} is called a

null sequence. A sequence {a™Hs called a Cauchy sequence 1f for e >0

there exists an integer N depending only on e such that for m,n > N

v(am - arP< e.



DEFINITION 2.11 A field K is said to be complete with respect to a
rank 1 valuation v if and only if every Cauchy sequence of elements of

K is convergent with respect to v.

IT K* Is an extension field of K, and v is a rank 1 valuation
of K, a valuation v* of K" such that v(xX) « v*(x) for all x c K iIs

called an extension of v, or a valuation extension of v.

The construction of a completion K* of any field R with respect

to a rank 1 valuation v yields the following:

1) K" is an extension of K and v* is a valuation
extension of v;
if) K" is conplete with respect to v~©;
HE) K CK* and K* Is dense in R, 1.e. for every a t K",
a is a limit of a Cauchy seguence of elements of K.
A brief outline of the proof of the above will be given here.
The complete proof can he found In Appendix, 2,
IT C is the set of Cauchy sequences, then C is a ring with

respect to the operations + {a™ +b~} and

{a™" b} = The secjuence (g@)where ar « a for all k is a
constant sequence. In the ring {0} is the additive identity, and
{1} is the multiplicative identity. C contains a subring of constant
seguences which is 1somorphic to K.

Let Z be the set of null sequences of C. Then Z is a maximal
proper ideal In C. Thus O/Z is a field. Let R* - C/Z. Then K~
contains a subfield isomorphic to K such that K* is the completion of

K if K is identified with this isomorphic subfield.



The completion K® of any field K with respect to a rank 1
valuation is an extension of K and the valuation v* of K" iIs an
extension of v. Consider now the extendability of a general valuation.

Consider first the extendability of non-archimedean valuations v
of a field k. |If v is the trivial valuation of k, then v can be
extended to the trivial valuation in any overfield of k. Therefore

assume that the non-archimedean valuations are also non-trivial.

THEOREM 2.11 Any non-archimedean valuation of a field k can be

extended to a non-trivial valuation of any extension field of k.

Proof: Let v be any non-archimedean, non-trivial valuation of a
field k, mapping k onto an ordered group G. Let K be any field
extension of k.
By the extension theorem, a given place of k can be extended to
a place of K. In particular if k ¢ FU{&> is a non-trivial place
of k with valuation ring R, then $ restricted to R maps R into F and
This restriction is a non-trivial homomorphism of R. Since R is
a subring of k, the extension theorem implies the existence of a place
&' of K with *restr icted to R being equivalent to ¢ restricted
OtCPR« H R)-
Also ae k, al R implies that 4>(@) = which implies <b@ *) * O.
Hence ®'(a~ D» 0. Thus $"(@) — <. Therefore<j>"|k = |k» and ¢
extends the place ¢ onto K.
It now suffices to show the following: ITf ¢ is a place of k
corresponding to the valuation v, and if ' is a place of K which
extends <, then the valuation v®, generated by &' on K is, by suitable

choice of the valuation group, an extension of the valuation v of k.
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Let R" be the valuation ring corresponding to <('. R"™ is given
by:

R* = {a] a *K, <p"(@ 1s finite}

» {a.]JaeK, v(@ >0 }

The valuation ring R of $ is given by:
R « {a] ae k, @) is finite}

> {a] ae k, v(@) >0}
Thus If ¢' extends $, then R «<» R"O k. If v® extends v, then R « R/l k.
Consider the converse of the two preceding statements.
Let R®" and R be valuation rings of K and k respectively, were
R« R" k. Let P" and P be the respective prime ideals of R* and R;
U® and U, the corresponding groups of units. Then P~ -{a_1| aeP "}
is the complement of R* in K, and P 1 ={a *] a e P} is the complement
of R in k. Thus R » R*/~\ k implies P * * P~ k. implies P=P""™ k_
Also U » U"RA\ k. Thus U iIs a subgtoup of U~".
1. As valuations corresponding to R* and R, define v® and v as follows:
In K v"(@)=aU", with the ordering relation v Xa) > O
implying a e P" .
In ki v(@) ¢ alJ, with the ordering relation v(a)> O
Implying a t P. J
The mapping aU -+ au® i1s well-defined since aU” = (aU)u-,
and is a homomorphism. It is also an isomorphism, since the kermel
of the mapping consists only of the unity of U. Thus

aek, aU” « U"if and only if a ek, aeU"
ask, au® » U"ifand only If aeU" A Kk -U

aek, &) «U"IFand only if aU » U.



The ordering is also invariant under the isomorphism. [IFf the all are

identified with their Images aU”, then v* is an extension of v.

11. As places and 4>, corresponding to R® and R, respectively,

let them be defined as follows:

InK: §'@) - >» ifalR"
a+ P" ifaeR"
Ink; $@ = malR

a+P ifaeR
Map &K irto (k) as Follows:
C - 00

a+Pea+P"
Since a + P « (a+ P) + P, the mapping is well-defined and its
restriction to R, <]PR) » R/P i1s an isomorphism. Hence the field R/P
can be isomorphically mapped into R*/P". Identify the inverse image
with its isomorphic image. Then ' is an extension in K of the place
$ of k. Thus the extension of the valuation is equivalent to the

extension of the corresponding place. Hence the theorem.

The question now arises as to whether an extension of a rank 1
valuation is again a rank 1 valuation. In general this is not the
case. However, it is the case when the field extension is finite.

Consider first the case of a trivial valuation.

Let v be the trivial valuation of k. 1t will be showmn that only
the trivial valuation of K, an algebraic extension of k, e<xtends the

trivial valuation of k.



Suppose V" Is a valuation of K, trivial on k. Suppose v® 1s
non-trivial on K. Then there exists 4 e K such that v*(a) j O.

Let v () < 0. Since K is algebraic over k, ae K satisfies a

polynomial X" + a™~" * + _ _ + » O where a™ e k. Thus
an+aan_1+_ - +a «0
1 n .
a’ +a1a1 + .. -+ a qa»-a
- 11 1 A~ (-
v(a“+a1a 4- _ . -+a 3@ )»v(an)»O-
But vi(@a» + a1 + __ _ +3 - min{ v'Ca*)}
and forall 1 »1, 2, - - ., nrl, nv'@ <( - 1) vi(@. Thus
vi@+atat 1+ - + nay'(«) <0.

Consequently v"(a@) > 0. A similar computation shows that vf(a) can
not be greater than zero. Therefore v*(0) ~ O and v® must be the

trivial valuation on K.

Let v* be a non-trivial non-archimedean valuation of K (nhot
necessarily a rank 1 valuation); <", the corresponding place; and
k, sane subfield of K. The restrictions of v* and ¢ onto k yield
respectively a valuation v of k and a place ™ of k. The group of

values G* for K contains the group of values G for k.
DEFINITION 2.12 The groups @ and G are the respective value groups.
The Index e *" G":G) is called the ramification index.

The ramification index is a measure of how many new values are

fat-



introduced by the extension. The image field $"(R") cotains the
image field ¢(R) as a subfield where R* and R are the respective

valuation rings.

DEFINITION 2.13 The degree f [ ¢'(RPH: <HR)] is called the residue

class degree.

THEOREM 2.12 |If K is a Finite extension of k» then both e and F are

finite and

ef <n « [K:K]-
Proof: Let 6I’ - - -y 8r be elements of K such that the cosets
vBY)+ G, - - V(8> + G are all different from each other, and
let Wes = = v\%3 be elements of R" so that <f>'(w’(),- R (WS)

are linearly independent over (R)-

It will be shomm that the rs elements («h, ., s >0, ...,P)

of K are linearly independent over k. This implies that rs < n.
Let ™, &, - -, be elements of k, nct all zero,

and let v(am)— man{ v(al)}- Then

VYR + o == +ag) -Vv(@ED) +VOwm + - -+ Xghs)

with X, = a /am_ But this implies v(le >0 and v(xm)>= O. Hence

X1W1+.o.+XgWS E R" @ V/AXIWL + * * %+ XGQWGN _ O*

Since
=—OWViI + .. X)) — P Q)W) + - - A+ ('OgH™ WD)
« PO (W) +- - - + <KxgH"(Wwgd) t o
and since A " 1 and the wMs are linearly independent over

1 2
$(MH» then VOGN + . - £ X W D« O,



Hence v(a.w. +_ _ +aw )» min {v(a-)}-
XX 1L

Define a relation

1 (aij"l -+ a2jw2 + o ®© © + as.J>>s- Bj —_ O
where aXJ e k»zsuch that
+a W+, - -+ AgfVE) BN »

if not all the a™ are equal to zero.

The values of each of the suxnmands are all different because

they lie in distinct cosets. Hence

v(E a™wn™ ) «v(0) — »

Thus v(@™wnN + - _as™g) * » which implies

min {v(aj)> » 0 =

Therefore a™ — O for all i,j. The w” are linearly independent

over k.

THEOREM 2.13 If k is a field with a non-trivial, non-archimedean
valuation v of rank 1 and K is a finite extension of k, with the
non-equivalent valuations Y™» Vo» e e e» al* of yhich are extensions
of v, with respective ramifications e®, en, _ - and residue class

degrees ", - - 5 then S. N "7 tK:K]-

The proof of this theorem is a generalization of the proof of

the previous theorem.



Using these two theorems, it can ha shown that the extension

of a rank 1 valuation to a finite overfield i1s a rank 1 valuation.

THEOREM 2.14 Let K be a finite extension of a field k; Vv, an
extension of the valuation v of k where v is of rank 1. The group

of values v"(K") can be mapped order-isomorphically Into a subgroup S
of the additive group of reals so as to leave v(k*) Tixed, where K~

and K'' are the multiplicative groups of K and k respectively.

Proof: Let v"(K*) — G Then vw(k")C G and v(k")C S.
G is commutative and (G: wv(k")) =e is Ffinite.

Let eG= (egl geG} - Then e CwWk")CS.
Define a mapping f:G -+ S such that (@) » e MevCa)). T is a
valuation. For a e k, f(@) —v(@)- The valuations v* and T
are equivalent since T Is an isomorphism. Hence v* is a rank 1

valuation.

In the case where the field k 1s complete, let v be a rank 1
valuation of a field K, vwhere K is a finite extension of k. k
is complete with respect to v, and v Is non-trivial on k. Under

these conditions K is also complete.

THEOREM 2.15 A valuation v of rank 1 of a complete field k

permits at most one extension onto a finite extension K of k.

Proof: See Appendix, 3.
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Let the valuation v in the preceding theorem be non-archiraedean.
In this case there is always one and only one extension of the
valuation.

In the case v i1Is archimedean, the existence of an extension
to an overfield has not beeu considered. In order to examine this,

the following definition and results are necessary.

Ve

DEFINITION 2.14 A field k containing R, the real numbers, is called
normed If there exists a mapping a jlajjj of k into R*U ©)
such that
i) |lal]l =0 if and only if a =0,
i) !ab{j<_ BJalj-Hibllfor all apt k,
iiD) Na +b[j< (lalj + BIb|R for all a,b c k,

iv) Mab]! ** J j-aJojll for a eR, b c k.

COROLLARY a cR implies |laj] — mM8=1rI@ *° a1 =111l 5 this
implies the norm of elements of R, differ from theitr absolute value
by some fixed real quantity. Hence the norm Induces the same topology

onto R as the absolute value.

THEOREM 2,16 (Gelfand-Tornhein) A normed field must either be equal to
the field R of real numbers or be equal to the field C of complex

numbers. (See Appendix 1 for proof).

Now let k be a field with archimedean valuation. Then k has
characteristic zero. Thus k contains the field Q of rational numbers.
It has been shown that up to equivalence the absolute value

is the only archimedean valuation of Q.
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Let k™ be the completion of k. The equivalence classes of k
representably by Cauchy sequences of elements of Q form a subfield
of k™ isomorphic to R, the reals. The valuation of K" restricted to
R, or Q°, is the usual absolute value. Thus from the Gelfand-Tomhein
theorem, k™ must be eirther R or the field of complex numbers. The
uniqueness theorem guarantees that the valuationsis the usual absolute

value. These results can be summarized into the following theorem.

THEOREM 2.17 A fTield with archimedean valuation is always isomorphic
to a subfield of the field C of complex numbers, the valuation being

the usual absolute valuation.

Let the field k have a non-archimedean valuation with group

of values G.

DEFINITION 2.15 The valuation v of k is called discrete it and only

if the group of values G is cyclic.

Since G i1s cyclic, one can assume that G is the group Z of
integers.

Also from the definition, there exists r e k such that v(r) » 1.
For this r e k, v(r) generates the group G. For each a ek, (& - n
for some n. Hence v(a/r") « Owhich implies that a/r is a unit of
the valuation ring. Thus for any element a In the valuation ring,

there exists a unit c such that a» rc (n « 0,1,2,...).

THEOREM 2.18 |If K is a Finite extension of k, then an extension of

a discrete valuation of k onto K is a discrete valuation, of K.
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Proof: Suppose K is a finite extension of k. Then (G:G) is finite
where G* and G are the groups of values of K and k respectively.
Hence G GG~ and for some integer n, rMG"CGCZ. The group nG 1Is
an additive subgroup of Z which does not consist only of zero. Since
any such subgroup is a principal ideal in Z, nG 1is cyclic. Hence

G" is cyclic.

G"™ may not be equal to Z. G" iIs at least an additive subgroup
of Z. The value of an element a e k Is therefore not uniquely
determined. It depends on the fi4ld which is being considered. IT
v(@) is the value of a In G, and v"(a) 1is the value of a in G*, ten
v'(@) - nv(a) for any a e K. Since G* is cyclic, there exists s e K
such that v°(s) - 1L Thus v*(r) —n; and r = cs' wrere c iIs a unit
of K, where n=-¢e ¢ (G":0).

Example. Consider the rational nunbers Q with a p-adic valuation

where p — 2. Then in Q(i) were i2 +1 -0,

2 - <-i)( + i)2.

Thus (—1) isaunit. (1 + 1) is integral and pr*me. Since

| ~ »there exists only one extension of the
i
valuation and that e — 2 and f - 1. Therefore if Q(i) - K,

v (@) - 2(a)-

It has been shown that if the ramifiaation index e and the
residue class degree T are finite, then ef>n » [K:K], Now

however, if k is complete by a discrete valuation, then ef « n.



THEOREM 2.19 Let k be a field complete by a discrete valuation. Let
K be a finite extension of k,, with ramification index e and residue

class degree . Then ef *» n » [K:K]-

Proof: It suffices to show that ef > n. For every integer i, choose
an element r™ c K such that
v(re) -v (r) =1,

where v is the valuation on K. Choose elements w», ww». - . w" from
the valuation ring R® of K so that their Images by the corresponding
place are iIndependent and form a basis of the residue class field of K
over the residue class field of k. Any element of the residue class
field of K is an image of a linear combination

Ao a-|Ww+ _, , +a™w®

where R, the valuation ring of k; and conversely.

Let a be an element of K with v(@) > 1. a/t iIs iIntegral
since v(a/r™) > 0. Thus there exists a linear combination A whose
image in the residue class fTield of K is the same as that of /™

and (a/r.)- A has mmage O. Hence v( — - A) > 1 which implies
ra

v(g - Ar™ > B§+1._

Now let a be an iInteger in K and v(a) >.0, By repeating the
above process for each i1, there exists a linear combination

A with va - ATd>» 1

AN with v(a - Agro - A > 2

AEQG » 1,2,...,n) with v(@ - £ AFi~ >.n +1,



Mifencs can be represented by a series J ~ri T where 9 are

combinations of the w*"s with coefficients iIn the valuation ring R.
Hence

o -1 ©uwiL+ _ _+amwwpri with integral a™ in k.

Choose r:. Let r:+ — r"s*, where 4—gj+ett, 0O<j <e -1,

teZ. Then

< - 1 1 (ajpw] + * * * + ajfwp

a "o 1 ( ( 1 an8t)wi 4+ | | - + ( 1 2ajfstOwf) rJ =

Since k is complete the series 13,5 converges to elements b™ of Kk,

which lie in the valuation ring R. Thus

a - 1 +fcj2w2 + @ * * + r x

Therefore every integral element as R is a linear combination of

the ef elements W™  with integral coefficients in k.

In k, doose an element a FO with v(@) > 0. For any a eK with
v(a) < 0, there exists an integer r such that v( a)>.0.
Thus aar, and thus a is a linear combination of w™ with coefficients
in k (hich are no longer integral).

Consequently n » [K:K] } ef. Hence n * ef.
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CHAPTER 111

VALUATION THEORETIC APPROACH TO IDEAL THEORY

Let k be the quotient field of a ring R with identity. Let R

be contained in the valuation ring of a discrete valuation of k. A

valuation v iIs defined on the set of ideals of R by

v(A) «min {v(a)} for every ideal A.
aeA

Such a minimum always exists since there exists b ek, b 1 O, swch that

Thus v(ba) > Oand v(@) } -v(b) for all a e A.

bA 1s contained In R.
Hence a minimum exists.

Since v is discrete, the values are integers.

THEOREM 3.1 For any ideal Aand B in R
D VA +B) »min (A, vB)} ;
1) viAB) - W +v®
ii1) for any principal ideal (@),

V(@) «V(@).-

Proof: 1) Vv(A + B) «min {v(a +b), v@), v(b)>
bee
» min {v(a), (b))
- min (MA), v}
i v@Ad » m(laz {M@b)>  « min {v(a)+ v(b)}
a
beB

«min (v@3} + min{v(b)}

- v(A) +v(B).-



ifif) Forevery Xxe R, v(xX) Oad if x=1, vx) =0.

Thus v((@)) « min {v(@x)> - mi{v(@) +v(x)} - v(a)-

In order to fully characterize ideals by their value with

respect to valuations, two axioms are required.

AXIOM 1 The field k has a set M of inequivalent discrete valuations

such that for every a e k v(@) O for all but a/finite number of v e M.

There are two immediate consequences of this axiom.
First v(a) =0 for almost all v e M. Since a e K, then a_l e k and
v(@1 > O for all but a Finite number of v e M. Hence v(@) =0
for all but a Finite number of v e M.

Let R be contained in all the valuation rings corresponding
to the v e M and let A be an ideal contained in R. Then v(A) » O
for almost all v e M because of the following:

There exists an element b 4 O In k such that bA Is contained
in R, and hence v(A) > ~v(b) for all v e M. Applying the axiom to b
yields v(A) > Ofor almost all v M. But the value of A is less
that the value of any nonzero element. Hence applying the axiom to
some element of A yields v(A)<0 for almost all v e M. Thus v(A) « O
for almost all v e M.
DEFINITION 3.1 A divisor D of k i1s the product of the valuations v e M;
i.e., D «» veV where e is an integer and equals zero for

veM v
almost all v ¢ M.

The divisor is the product of all valuations v e M. The
e
divisor will be denoted by Il v V, and the index will not be written.



DEFINITION 3.2 The order of a divisor D — IT v V at a valuation v e M
is v(D) » ex

DEFINITION 3.3 A divisor D is called integral if and only if

v(D) >0 for all veM,

e T
For two divisors D » Jl v v and D* » Hv V, thelr product is
given by
s
DD*" « Il vV where + ;

and their sum is given by
m
D+D »ITvY where m» min{e- f> -
D is said to divide D" (denoted D|D") if and only if

e <F for all v s M.
vV — VvV

Under multiplication, the set of divisors forms a group. The
group axioms follow since the integers form a group under addition.

The set of ideals A of R can be mapped into the group of
divisors by the mapping A e IIve where e * v(A), Non-zero elements
a of k can be mapped Into the group of divisors by a Illv  where
e, ~ v(a). .

Since v(A) « O for almost all v t M, H/V where e, * v(A)
is a divisor. The principal ideal &) i1smapped onto the divisor

IIveV where - v((@)) but v(()) » v(ad)- Thus the element a and

the principal ideal @) ale napped onto the same divisor.

For any two ideals A and B, A <t 1lv where e™=v(A) and
B IlvfV where T - v(B)-

(A+B) =— th where h = v(A + B).

But v(A + B) —min {v(A>, VB)} - min {e,» > - Thus



(A + B) o Npnindeyshinn - « nve  +  Tiviv,

h
Also  (ABy** Hv V where h, - v(AB). But h, - v(A D+ v(B)

Thus

A nww+rtv _ ¢CNvE)YWN v
Hence sums and products of ldeals are mapped onto sums and products
of divisors, respectively.

The mapping of ideals iInto divisors is a homomorphism of the
multiplicative semigroup of ideals into the multiplicative group of
divisors and the additive semigroup of ideals into the additive
semigroup of divisors. In order that the homomorphism be an

isomorphism, another axiom IS needed.

AXIOM 2 Given a finite number of valuations v*,.,., V¥ e M, areal
number e > 0, and any r elements a®, ...,ar € k. There exists a

c e k such that vc - a-)"™ « and v(c) > O for all other v « M.

These axioms suffice to found ideal theory in valuation theory.
To show that ideal theory does obey the axioms, diophantine equations
will be used.

Let R be the iIntersection of the valuation rings for the
places corresponding tht the v £ M. Consider the problem of the
solvability of diophantine equations locally at a place ¢ iIn

and globally In R.
DEFINITION 3.4 Given a system of linear forms
1 Trautl a1l + e e e+ N/ + I

a =X, 4 a +_ * _+a x 4 b
¥n ml™ 1 m?xi an n m



where ai

§

local solution is x» g -1,2,...,n) Insome so that y= e R®

ekad be k for i -1,2,...,mand §J » 1,2,...,n. A

for all 1. The global solution consists of elements in R such

that y™» a R for all 1.

THEOREM 3.2 (Fundamental Theorem) The global solution exists It and
only 1f, te local problem is solvable at every place corresponding

to the v e M.

Proof: Suppose the global problem is solvable. Then by the definition
of R, the global solution is a local solution at every place.
Suppose the local problem is solvable for every place v e M.
Two cases may OcCcCur .
1 If v Is a valuation such that v(@‘j) > O and v(b™) j> 1 for all i
and j, ten all n-tuples CX™ X2, .-, Xn) Br which v(x™) >,0 for
all j are local solutions at v.
1. If XjJ, %, -., % Is a local solution for the place v, then
every x» sufficiently close to x™ 1s also a local solution for that
place.
Suppose there is a local solution X, >, .-, X for every v.
By Axiom 1, far almost all v, v(aij) + 0, VCb™) £0. Case I holds
for almost all v. By axiom 2, there exists an x™ E k such that

VIO — X)) » s fori ™ 1,2,...,r and

v(xp *.0 other v « M, vhere e Is chosen so as to
make Case 11 applicable. Similarly there exist elements X, ..., X" e k.
These elements X|],%2,--.,xX» are a local solution for all v.

Hence they are a global solution.



DEFINITION 3.5 A first degree diophantine equation iIs a system

apxf + a122 + ¥ e e *+ alpn "" bl

AXx FAgXs - - - T Ry
with a.. ,b. Ekforai »1, 2,....,mand J » 1,2,...,n and where
e R for all j Is a global solution and x* in some is a local

solution.

Applying the Fundamental Theorem to this system yields the

Tfollowing theorem.

THEOREM 3.3 The global solvability of a first degree diophantine

equation is equivalent to local solvalitity at every v e M,

THEOREM 3.4 Let a first degree diophantine equation consist of

only one eguation alx,14— GXy + - - +AaX - b. Then a necessary
and sufficient condition for the solution of the diophantine equation
is v(b) > min{ VCa™M)} -

Proof: Let ayg +a?x9+ - -+ anxn-b be a first degree

diophantine dequation. Suppose the equation has a local solution
at the place v. One may assume that at least one coefficient, say an,

is not zero. Then

T A TR T - - = T n—1_E
%, % %, %,

Consider the linear form y « ag*j + a2 + x*x * + A wnhere

XN, %,. - -, Yy are integral at the place v.



Then b«y—ajx_l—_,_—e%)%_ Hence

v(b) min {0, W@,---v(@_ M3} -
Suppose v(b) j rain L 0, (@)t v(a=>, g, DN

Case 1. Let the minimum be zero. Then v(a;) > O for all 1 and

v() > 0. Then every set XX, »»_. - ,, x> with virj) >01is a

ideal solution.

Case Il. Let vfa™) be the minimum. Then v(b) > /") and

v(b/a;)) 10. Let “~«¢ —b/an ad let all gther X;"s be zero. Then
y=0and X*, %,---, %} a j°=p solution.

Consider the diophantine equation +a,x +... + b,
with e k, he k, Then using the inequality

v(fc/an) 2 {O» vag/mass ** X van_ e T
the theorem follows.

This condition coincides with the usual condition for
solvability of diophantine equations in the ring of rational iIntegers.
Let 6 » N VW™ and * nwWag® be the divisors onto which
the elements b and are mapped. The condition becomes

0 divisible by Oj+ ax+ . . 4 i

The definition of sums of divisors can be interpreted as the greatestt
common divisor of as-- -. , a. Identifying the divisors with
the corresponding principal ideals or the elements themselves* one
obtains the usual condition for the solvability of diophantine

equations.



To show that ideals do satisfy the axioms, it must been shown
first that the field k is the quotient field of R.
Let aekand a4 Q There exists X e k such that for some e >0,

v(x—g> e if v(@ <0

v(xx) O otherwise.
Since v(a) * Oimplies v(I/a) = O, for some = O v(a) <O implies
vixX) YOand x ™~ O. Thus x eR and

vieax - 1) > e+wvwWa) ifv@ <0

v(@ax) =0 if v(a) >0.
Hence for some e> O, &Xx e R. Thus a — ax/x where X, ax e R. Therefore

every element of k can be expressed as the quotient of elements of R.

THEOREM 3.5 The mapping of the ideals of R into the group of divisors
is one-to-one. That is, an ideal A of R can be characterized by its

order v(A) for all v e M.

Proof: Let A be an ideal of R and let the Value of A be V(A) = e™.
Suppose a Is any non-zero element Iin A. Then v(@) > e for all v e M.

Let v , v v be a subset of M such that for all other v e M,
= r

v(a -e - Such a finite set exists because both v(A) and v(@) are

zero for almost all veM. Foreach i1 @ 1,2,...,r, choose a» P R

such that " ef where eV = e™_ Consider the diophantine
equation

ax+a%(+_ - tatxi -b

where b t k. By the choice of a and &, and by the condition of

solvability of such equations, the equation is solvable if and only If
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v(b) 2 &, V<
Every b satisfying this inequality can be expressed

>
b ax+a1x14~ . - '+arXr

where X, xX» ¢ » Since a and a™ are in Afor all 1, b £ A,

Thus A consists of all b e k such that v(b) > e, for all ve M,
and is therefore uniquely determined by the valles e*. Hence the
mapping A ITveV where ey = Vv(A) iIs one-to-one. A is uniquely

determined by its divisor.

THEOREM 3.6  The mapping of the ideals into the group of divisors
Is onto. That i1s, to any set of values for the orders of the
valuations, there corresponds an ideal.

Proof: Suppose that for every v, avalue e, exists such that e, = O

for almost all v e M. First it will be shom that to any given

rational Integers e™, en,. - .,  , there corresponds an element a e
such that
vi@ - «1,2,...,n
v(@ >0 for all other ve M,
For each 1, dioose e k such that ""ef" Choose ae K
such that
D vV@-a>" —~

i) v(@) >0 for all other v e M.
Since vi(a) - vi(ai + @ - ai))-vl(ai), a is the required element
of k.

Choose Vil_é‘NrSO that ev « O for all other v ¢ M.
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By axiom 2, tlere exists a e k, a 1 O, swch that v™a) >. e. for
i«01,2,...,r and v(@) > O otherwise. Thus v(a) > for all v.
Choose ul, uz, uS E Msuch that v(a) » Ofor all v except

uJ. . Vs for all 1 and J. TheA there exists b e k such that v(b) —-en

where v « vi , W for all 1, j;and v(b) > O, otherwise.

For the sum of divisors aand $ , v(a + 3) - tn{ v(@), v}
for all v. But a +3 is the image of the ideal A = (@) + (I, which

therefore has the given values. Thus the mapping is onto.

This last proof also illustrates that any ideal can be generated
by two elements where one may be freely chosen.

One can now consider divisors instead of ideals. Since the
divisors form a multiplicative group, the ideals form a group.

Integral ideals A, those contained In R, are the ideals for
which v(A) >.0 for all v. Thus integral ideals correspond to integral
divisors.

Prime i1deals remain to be characterized. For two ideals A
and B, B divides A (BJA) ifand only iIf B contains A. Then the
values v(A) are contained in the valuation ring corresponding to
the valuation of B. Thus v(B) < v(A) for all v e M. Consequently
the divisor of B divides the divisor of A.

Let A,B,C be ideals with B4 R, C#R, and A - BC. Thus BJA
and CJA. Then ACB and ACC_. Hence there exists b eB and c e C
such that b,c § A but be e BC — A. Hence A iIs not prime.

The only possible prime ideals other than (O) and R are those

whose divisors have only one factor v. These are prime ideals.



Let g be a prime ideal and 8" be its divisor. 8 1is the set of all
aek withv@)>1adu(@ >Oforu~v. Ifabe8 , a,beR,
then v(ab) > 1 and u(@) =0 for u 4 v. Either v(a)>JL and u(a) > O,
or v(b) *1 and u(®) > O. Ilence either a e8 or b £8 _

Except for the zero ideal and R, the ideals corresponding to
the valuations v are the only prime ideals of R. The isomorphism
of ideals and divisors shows that every ideal is uniquely decomposable
into the product of prime ideals.

The most Important result of the axioms was that the ideals of
R form a group. This property is sufficient to imply the validity
of the axioms.

Let R be a ring with identity, with quotient field k, and whose

ideals form a group.

THEOREM 3.7 In any integral domain D with quotient field k, ayy ideal
A of D for which there exists an ideal B such that AB *R i1s

finitely generated.

Proof: Since 1 e R, there must exist a representation 1-£am™

where a™ £ A and e B. The elements a™» ao, ..., & generate A.
ITf not, then there exists an ideal A" such that

Ar=@) + @+ - -+ @)CTA,
Then ATBCAB - R. But 1 e A"B. Hence A"B = R — AB. Consequently

A" = Aand A i1s Tinitely generated.

Since the i1deals form a group, every ideal of R i1s Finitely
generated. But this iIs equivalent to the maximal property for

ideals: Every set of ideals contains maximal ideals.
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For every maximal proper ideal, define a valuation of k as
follows:

Let a J O be an element of k. Let @) s " psP where p is
a prime ideal. Define v(a) » eP and v(0) » ** _Then the Ffirst
property of the definition of valuations is satisfied. The second,
property follows from the fact that (@b) % (@)(b) mplies
v(ab) - eP + fP where @) « %P, (b)) »npP for a,b §oO.

The third property, that v(a + b) min( v(@), v(®)) , follows

P

fromva+b) »v(np'p +ITp£p) « eP if eP < fP_ This valuation 1is

discrete since the values are the integers (ad @ ).

Different prime ideals, p and p*, yield different valuations.
The prime i1deals are maximal. Eence for prime ideals A and B,
A+ B ™ R. Thus there exist a cA and b e B such that a +b = 1.
Since A and b tA, vA(b) KO and vﬁ(b)> O. Thus these valuations

differ,

THEOREM 3.8 The set of valuations with the above properties satisfies

Axiom 1 and Axiom 2.

Proof: 1. The first axiom iIs easily satisfied since the factor-
ization of any ideal contains only a finite number of prime ideals p
with nonzero exponents. Thus vp(a) "" O for almost all p.

Il1. An element a © k belongs to R 1f and only if @)C-R,
i.e. vpga)_* Ofor all p. Let Rp be the valuation ring of the
valuation corresponding to p, tten R = ORs™

IT p£, P2»« = *»Pg are any finite number of distinct prime

ideals, then for any n » 1, pj + P Py*\"" Rx The left merber



of the equation is the greatest common divisor of two prime ideals
and must be R. Thus there exists a e R, x e R such that at+t x =1,

p (& and p () for i -2,3,...,s. For some n

£1 v (X - 1) is large

i) v X islarge
Pl

e

i) v ) O for all other p.

Thus for a e k and r distinct prime ideals p™, p» e**» P»

there exists x e k such that v . (X - 1)jj. €~
P1

v Q2.
PE

Vp o) > C* P + p, but vv(a)< 0

VP cO=> 0 otherwise.

Let y » ax. Then

vV y-aTe +v @
P1 P1

vV O 2 e+ v, (D i< 2,3,....r

O L T+ %@ PR VS
Vp o) > vP(a) Yy 0 otherwise,
Given e > 0; rdistinct prime ideals of R, ™, P,---,Pr;

and r elements of k, &, a». **" a* TNere exist y», w»>. ® =y

in Kk such that

Vei<Yl —Al» — E
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v (y-) > E i Nj
73
vp &.) > 6 otherwise
forevery i=1,2,..,r. Lletz»y "+ yw+ __ _+Yyr- . Then

vpi(z -—a)>e (=1,2,....n

7/

VP @ >0 otherwise,

The element z satisfies the condition of Axiom 2. Therefore the

set M of all valuations VP satisfies Axiom 2.

Axioms 1 and 2 are equivalent to the statement that the

ideals of a ring form a group,

THEOREM 3,9 IFf the axioms are satisfied in a field k, ad K is a

finite field extension of k, then the axioms are satisfied In K.

Proof: Let R be the valuation ring corresponding to the valuations
peM of k, ad let R be the intersection of these valuation rings.
The ideals of R form a group.

Let the set M" of valuations of K be the set of all possible
extensions P of valuations p e M of k. The valuations of M* are
discrete. IT P is an extension of p, the notation P|p will be used
to indicate that P divides p.

(1) p has only a finite number of divisors.

Let 0E K such that «'" + + _ _ _+Ay—0 \‘here A; ek,

Since the axioms hold iIn k, YLz2(81) —© For at most a finite number of
peM. Since (D, Min{ vw(@.-|)} > © Tor ajmeat gl P e M. Thus

Vp(@) > O for almost all f £ M"_ Therefore axion 1 holds.
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Let P:L’ %, - - -y Prbe distinct valuations of M". Let
W2, - - -, W be a basis of K over k. Let a™c™,. _.,ar be

elements of K, and let e > 0 be a real number.

Choose valuations P™, - _ Pg of M® such that v™wW™ >. 0
for all 1 and for P #P™,. _ P~ Py+p* e e» Pg* LSt piy*iss By
be valuations of k such that each P, is an exte/nsion of one of the
pJ_ Let PIt- - _, F;( be all possible extensions of the valuations pJ_
The valuations P™_. __, B are iIn this set. let ct™- ___. - -0

and assume e > 1.

By the approximation theorem for rank 1 valuations, there exists

Ksuch that vp (g —a-) > e (a1 -1,2,...,n_

Let g - Xg + = - FX W with X, € k. Let
b « o 4 y W, where Yj iIs chosen In k by axiom 2.

Then

VP (v- _Xi) > e" for 1 « 1,2,...,m; for some e-
i =

vp (YWMHDE O otherwise.
Then for some ~
Yo @ -9)2e” +min{ w -~ ( ""1.2,...,r) -
Hence, for i » 1, 2,...,r
Ve(b-adav (b-9 + @ ad)> e
and vo (b)) 30 otherwise.
The element b satisfies the axiom.

Therefore axiom 2 holds in M".



This development of ideal theory holds in the field of rational
numbers using the ring of integers. It therefore holds In every
algebraic number field, with the ring of algebraic integers. The
set M of valuations consists of all possible valuations except the

archimedean valuation.



APPENDIX

The following is a list of theorems and results that appear
without proof. Given is the location of the proof, If the reader
desires such proof. Since all books are listed iIn the bibliography

only the name of the author and volume and page are given.

1. Artin, page 45.
2. Jacobson, Vol. 111, page 217

3. Artin, page 65.
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