
Southern Illinois University Edwardsville Southern Illinois University Edwardsville 

SPARK SPARK 

SIUE Faculty Research, Scholarship, and Creative Activity 

2012 

A Review of Some Subtleties of Practical Relevance A Review of Some Subtleties of Practical Relevance 

Keqin Gu 
Southern Illinois University Edwardsville, kgu@siue.edu 

Follow this and additional works at: https://spark.siue.edu/siue_fac 

 Part of the Acoustics, Dynamics, and Controls Commons, Controls and Control Theory Commons, 

Control Theory Commons, Dynamic Systems Commons, and the Process Control and Systems Commons 

Recommended Citation Recommended Citation 
Gu, K. (2012). A Review of Some Subtleties of Practical Relevance for Time-Delay Systems of Neutral 
Type. ISRN Applied Mathematics, 1-46. doi:10.5402/2012/725783 

This Article is brought to you for free and open access by SPARK. It has been accepted for inclusion in SIUE Faculty 
Research, Scholarship, and Creative Activity by an authorized administrator of SPARK. For more information, please 
contact jkohlbu@siue.edu. 

https://spark.siue.edu/
https://spark.siue.edu/siue_fac
https://spark.siue.edu/siue_fac?utm_source=spark.siue.edu%2Fsiue_fac%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/294?utm_source=spark.siue.edu%2Fsiue_fac%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/269?utm_source=spark.siue.edu%2Fsiue_fac%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/116?utm_source=spark.siue.edu%2Fsiue_fac%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/117?utm_source=spark.siue.edu%2Fsiue_fac%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/247?utm_source=spark.siue.edu%2Fsiue_fac%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jkohlbu@siue.edu


International Scholarly Research Network
ISRN Applied Mathematics
Volume 2012, Article ID 725783, 46 pages
doi:10.5402/2012/725783

Review Article
A Review of Some Subtleties of Practical Relevance
for Time-Delay Systems of Neutral Type

Keqin Gu

Department of Mechanical and Industrial Engineering, Southern Illinois University Edwardsville,
Edwardsville, IL 62026, USA

Correspondence should be addressed to Keqin Gu, kgu@siue.edu

Received 15 August 2012; Accepted 11 October 2012

Academic Editors: S. W. Gong and W. Yeih

Copyright q 2012 Keqin Gu. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

This paper reviews some subtleties in time-delay systems of neutral type that are believed to
be of particular relevance in practice. Both traditional formulation and the coupled differential-
difference equation formulation are used. The discontinuity of the spectrum as a function of
delays is discussed. Conditions to guarantee stability under small parameter variations are given.
A number of subjects that have been discussed in the literature, often using different methods,
are reviewed to illustrate some fundamental concepts. These include systems with small delays,
the sensitivity of Smith predictor to small delay mismatch, and the discrete implementation of
distributed-delay feedback control. The framework prsented in this paper makes it possible to
provide simpler formulation and strengthen, generalize, or provide alternative interpretation of
the existing results.

1. Introduction

Time-delay systems of neutral type may be used to model a systemwithout feedback control,
such as a lossless transmission line [1]. It may also be an appropriate model for systems under
feedback control, such as discrete implementation of distributed-delay feedback control [2].
Compared with systems of retarded type, analyzing systems of neutral type involves a
number of rather subtle points. A thorough understanding of these subtleties may be crucial
to understanding some rather surprising phenomena of practical importance.

One of such phenomena is the drastic change of stability under arbitrarily small delay
deviation from the nominal value. This phenomenon has been documented for decades
in the control systems [3] and is known under various circumstances as practical stability
[4–8], w-stability [9, 10], and robust stability under small delay [11] in the control systems
circle and known as strong stability [12–14] in the more mathematical circle. Some simpler
problems, such as the practical stability problem of Smith predictor under small delay
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mismatch [5–7], have been understood well using other methods, such as Nyquest stability
criterion. However, some other problems, such as the mechanism of instability of discrete
approximation of distributed-delay feedback control [10, 15–18], require more systematic
approach to be understood completely.

The purpose of this paper is to summarize the basic theoretical background of the
stability of time-delay systems of neutral type that the author believes to be of particular
relevance, and to illustrate how these theoretical results can be applied in some practical
settings. In addition to the traditional formulation, the coupled differential-difference
equation formulation will be used extensively.

It is not the purpose of this paper to conduct a comprehensive survey of general time-
delay systems. For that purpose, the readers are referred to the papers by Niculescu et al.
[19], Kharitonov [20], Gu and Niculescu [21], Richard [17], Normey-Rico and Camacho
[22], and Sipahi et al. [23]. Many books are devoted to different aspects of time-delay
systems. Bellman and Cooke’s book [24] provides a very readable introduction with a
thorough treatment of the distribution of characteristic roots. Hale and Verduyn Lunel’s book
[12] provides a comprehensive mathematical coverage of time-delay systems. The book by
Diekmann et al. [25] is devoted to retarded systems only, but with more thorough treatment.
The book by Kolmanovskii and Myshkis [26] gives a comprehensive coverage that may be
more accessible to readers with limited mathematical background. This book also contains
numerous practical examples in different fields of science and engineering. The book by
Malek-Zavarei and Jamshidi [27] is also a useful reference for some topics of interests that
are accessible to readers with limited mathematical background. The short book by Ėl’sgol’ts
[28] covers many results that may be difficult to find in other books. A more comprehensive
coverage can be found in the book by Ėl’sgol’ts and Norkin [29]. For treatments with more
modern approaches and concentration on stability problems, the readers are referred to
the books by Gu et al. [30] and Niculescu [31]. The books by Górecki et al. [32] and by
Kolmanovskiı̆ and Shaı̆khet [33] also cover optimal control problems, among other topics.
Stépán’s book [34] is devoted mainly to frequency domain approach, and the book contains a
rich collection of stability charts. The book byMichiels andNiculescu [35] also uses frequency
domain approach, but it also covers control problems. Mao’s book [36] covers stochastic
systems. Stochastic systems are also covered in [26, 37], but the coverage is less thorough in
terms of theoretical development. The book by Wu et al. [38] uses mainly simple Lyapunov-
Krasovskii functional approach. While such approaches are rather conservative in general,
the book also contains some more updated results on time-varying delays and linear matrix
inequality manipulations. The book by Normey-Rico and Camacho [39] is devoted to process
control. Erneux’s short book [40] is more concerned with a dynamical systems point of view.
Kuang’s book [41] covers the applications to population dynamics along with basic theories.
A comprehensive coverage of numerical methods may be found in Bellen and Zennaro [42].
A number of books are devoted to systems with only input or output delays. Zhong’s book
[43] is devoted to robust control. The book by Zhang and Xie [44] is devoted to optimal
control and parameter estimation. Krstic’s book [45] extends many results to nonlinear and
distributed parameter systems. There are also a few books with much narrower scopes. For
example, the book by Silva et al. [46] is devoted to obtaining stabilizing parameter regions
of PID control of systems with an input delay. The book by Wang et al. [47] is devoted to
finite spectrum assignment. Finally, a number of books, such as Curtain and Zwart [48] and
Bensoussan et al. [49], also treat time-delay systems in the framework of infinite-dimensional
systems.
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This paper is organized as follows. Section 2 covers the traditional formulation of
functional-differential equations and differential-difference equations. Section 3 covers the
more recent coupled differential-difference equation formulation. Section 4 provides various
stability definitions. Section 5 reviews the distributions of characteristic roots and their
relations to stability. Section 6 covers the stability issues of difference equations. Especially,
the discontinuity of its spectrum is observed, and conditions of stability under small delay
deviations are presented. Section 7 discusses the continuity issue in the stability analysis of
the complete time-delay system of neutral type and summarizes the principles and guidelines
for practical stability analysis. Section 8 considers the retention of stability under small
delays. Section 9 covers the sensitivity of the stability of the Smith predictor subjected to a
small delay deviation. Section 10 presents two classes of time-delay systems that appear in the
form of neutral type but behave as retarded type systems. Section 11 gives a comprehensive
coverage of the limitations of discrete implementation of distributed-delay feedback control.
The effect of dependence of delay errors are examined. Section 12 covers the marginal case
when an infinite number of left half plane characteristic roots approach the imaginary axis.
Section 13 concludes the paper.

2. Functional-Differential Equations

Traditionally, a linear time-delay system of neutral type is described by the following fun-
ctional-differential equation:

d

dt
[D(t)xt] = L(t)xt, (2.1)

where D and L are R
n-valued linear operators for each given t; xt is defined as

xt(θ) = x(t + θ), θ ∈ [−r, 0], (2.2)

and r is the maximum delay. In other words, the notation xt represents a shift of the time
function x by the amount t, and a restriction to the interval [−r, 0]. In general, the linear
operators are in the form of

D(t)φ = φ(0) −
∫0

−r
dθ

[
μ(t, θ)

]
φ(θ), (2.3)

L(t)φ =
∫0

−r
dθ

[
η(t, θ)

]
φ(θ), (2.4)

where the subscript θ is used to indicate that θ is the integration variable, and μ and η are of
bounded variation with respect to θ for each given t. For the problem to be well posed, the
integral on the right hand side of (2.3) should be uniformly nonatomic at 0; that is, for any
given ε > 0, there exists a δ such that the total variation of μ(t, θ) as a function of θ within
[−δ, 0] is less than ε for any t. The system is reduced to the retarded type if μ = 0.
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It is sufficient in this paper to consider the following special case:

∫0

−r
dθ

[
μ(t, θ)

]
φ(θ) =

K∑
k=1

Dk(t)φ(−rk) +
∫0

−r
D(t, θ)φ(θ)dθ, (2.5)

∫0

−r
dθ

[
η(t, θ)

]
φ(θ) =

K∑
k=0

Ak(t)φ(−rk) +
∫0

−r
A(t, θ)φ(θ)dθ, (2.6)

where

0 = r0 < r1 < · · · < rK = r. (2.7)

Notice, the summation in (2.5) starts from 1 rather than 0 so that the problem is well posed
(i.e., μ is uniformly nonatomic). We will use (2.1) only for notational simplicity. In most cases,
we discuss the special case of time-invariant systems with discrete delays; in which case, (2.1)
may be written as the following differential-difference equation:

ẋ(t) −
K∑
k=1

Dkẋ(t − rk) = A0x(t) +
K∑
k=1

Akx(t − rk), (2.8)

where Ak ∈ R
n×n, Dk ∈ R

n×n. For a given initial time t0 the initial condition for (2.1) is given
in the form of

xt0 = φ, (2.9)

where

φ ∈ C([−r, 0],Rn). (2.10)

The initial condition (2.9)may be expressed more explicitly as

x(t0 + θ) = φ(θ), −r ≤ θ ≤ 0. (2.11)

The basic theory of such systems can be found in the book by Hale and Verduyn Lunel
[12] and the references therein. For example, the existence and uniqueness of solutions may
be found in [50].

3. Coupled Differential-Difference Equations

Time-delay systems of neutral type were initially motivated by some physical systems
described by partial differential equations of hyperbolic type with time and space as the
independent variables. When one is only interested in certain discrete points on space, the
equation can often be reduced to the form of coupled differential-difference equations. A
well-known example is the lossless transmission line given by Brayton in [1]. However,
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similar models date back to as early as 1940s. See, for example, [51] where a steam system is
modeled in this form. As will be seen later in this paper, some well-known feedback control
methods, such as Smith predictor and discrete implementation of distributed-delay feedback
control, also result in coupled differential-difference equations. In other words, time-delay
systems of neutral type are often more naturally described by coupled differential-difference
equations.

A more general description of such systems is coupled differential-functional
equations [52]

ẋ(t) = f
(
t, x(t), yt

)
, (3.1)

y(t) = g
(
t, x(t), yt

)
, (3.2)

where the subscript t in yt indicates a shift and restriction of y similar to xt in (2.2). In some
literature, the delayed x, xt, is also included in the model [53]. However, it is always possible
to transform such a model to the form given in (3.1) and (3.2) by introducing additional
variables as discussed in [54]. Let

Ca =
{(
ψ, φ

) | ψ ∈ R
n, φ ∈ C([−r, 0],Rm), φ(0) = g

(
t, ψ, φ

)}
. (3.3)

If f and g satisfy certain continuity conditions, and the initial conditions

x(t0) = ψ,

y(t0 + θ) = φ(θ), −r ≤ θ ≤ 0
(3.4)

satisfy

(
ψ, φ

) ∈ Ca, (3.5)

then

(
x(t), yt

) ∈ Ca, ∀t ≥ t0. (3.6)

In this paper, we are mainly interested in linear time-invariant systems with discrete
delays. Such a system can always be described by coupled differential-difference equations
of the following form:

ẋ(t) = Ax(t) +
K∑
j=1

Bjyj
(
t − rj

)
,

yk(t) = Ckx(t) +
K∑
j=1

Dkjyj
(
t − rj

)
, k = 1, 2, . . . K,

(3.7)

where x(t) ∈ R
n; yk ∈ R

mk ; A, Bj , Ck, and Dkj are real matrices of appropriate dimensions.
As shown in [54], any linear time-invariant system with multiple discrete delays can be
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written in the above standard form. In some topics discussed in this paper, such as the
discrete implementation of distributed-delay feedback control to be covered in Section 11, it is
also important to consider the case when the delays are linear combinations of independent
parameters. A transformation may be carried out so that the independent parameters will
appear as independent delays. This process is briefly mentioned in the discussion after
Corollary 6.1 in Chapter 9 of [12] and described in more detail in [55].

The easiest way of arriving at the description (3.7) from a system block diagram is
through a process known as “pulling out delays.” This process will be briefly described in
Section 8, and it parallels the process of “pulling out uncertainties” that is described in detail
by Doyle et al. in [56]. If properly modeled, the “pulling out delay” process should result in a
state-space description given by (3.7)with a smaller state space than that of (2.8) or the more
general description given by (3.1) and (3.2). Indeed, the initial conditions, which describe the
initial state, may be specified as

x(t0) = ψ,

yk(t0 + θ) = φk(θ), −rk ≤ θ < 0.
(3.8)

Notice that, yk(σ + θ) for −r ≤ θ < rk is not needed for the case of rk < r. Therefore, instead
of Ca, the state space may be further restricted to

Cb =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
ψ, φ1, φ2, . . . , φK

)
∣∣∣∣∣∣∣∣∣

ψ ∈ R
n, φk ∈ C([−rk, 0],Rmk),

φk(0) = Ckψ +
K∑
j=1

Dkjφj
(−rj),

k = 1, 2, . . . , K

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
. (3.9)

For a time function z, let z(rk)t denote the shifting of z by t and a restriction to the
interval [−rk, 0],

z(rk)t(θ) = z(t + θ), −rk ≤ θ ≤ 0. (3.10)

Then the state at t is

(
x(t), y1(r1)t, y2(r2)t, . . . , yK(rK)t

)
. (3.11)

If the initial conditions (3.8) satisfy

(
ψ, φ1, φ2, . . . , φK

) ∈ Cb, (3.12)

then it is not difficult to see that

(
x(t), y1(r1)t, y2(r2)t, . . . , yK(rK)t

) ∈ Cb, ∀t ≥ t0. (3.13)

Notice that, there is only one delay rk associated with each yk. This “one-channel-
one-delay” formulation permits one to obtain a rather simple general solution in terms
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of fundamental solutions [54] as compared to that for traditional formulation given, for
example, by Henry [57]. It is also important to notice thatmk are typically much smaller than
n in many practical systems, which means significant reduction of computational effort in the
stability analysis using Lyapunov-Krasovskii functional approach [58–60]. These facts make
it desirable to choose the coupled differential-difference equation model even for systems of
retarded type, in which case the matrices Dkj satisfy

det(I −DE(s)) = 1, (3.14)

where D and E(s) are given in (5.4) in the next section. This is one of the examples in which
a system may appear as of neutral type by the form of its description, but it actually behaves
as one of retarded type, as to be discussed in Section 10.

It is interesting to observe that the model has been known as the “Roesser’s model”
and has been studied earlier using frequency domain approaches [61, 62]. The process of
“pulling out delays” was also used by Meinsma et al. [11] in the context of studying the
stability of systems with small delays.

In some cases, some simple substitutions allow one to transform (3.7) to the form
of (2.8). Therefore, the coupled differential-difference equations are often considered as an
alternative description of (2.8). In general, however, one needs to take derivative of (3.2) in
order to write the whole system, described by (3.1) and (3.2) (when the system is linear),
in the standard form (2.1). However, in order to make the resulting system equivalent to
the original system, it is necessary to constrain the state space to some subspace [63, 64],
which causes substantial complication in the analysis. Most early studies concentrate on
the description (2.1). An exception is [65] where direct analysis was carried out. In recent
years, there has been a substantial interest in direct analysis of coupled differential-difference
equations. See, for example, [53, 66–70].

4. Stability

It is convenient to use z to represent the state, C to represent the state space, and ‖ · ‖ to
represent the norm of the state for all four descriptions given above. Specifically, let | · | refer
to the 2-norm of column vectors, then for the system described by (2.1) or (2.8),

C = C([−r, 0],Rn),

z(t) = xt,

‖z(t)‖ = max
−r≤θ≤0

|x(t + θ)|.
(4.1)

For the coupled differential-functional equations described by (3.1) and (3.2),

C = Ca,
z(t) =

(
x(t), yt

)
,

‖z(t)‖ = max
−r≤θ≤0

{|x(t)|, ∣∣y(t + θ)∣∣}.
(4.2)
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In the case of coupled differential-difference equations (3.7), we have

C = Cb,
z(t) =

(
x(t), y1(r1)t, y2(r2)t, . . . , yK(rK)t

)
,

‖z(t)‖ = max
−rk≤θk≤0
1≤k≤K

{|x(t)|, ∣∣y1(t + θ1)∣∣, ∣∣y2(t + θ2)∣∣, . . . , ∣∣yK(t + θK)∣∣}.
(4.3)

Wewill also refer to a system described in any of the four descriptions as a time-delay system.
Then we may give the following definition of stability.

Definition 4.1. For a time-delay system, the trivial solution z(t) = 0 is said to be stable if for
any t0 ∈ R and any ε > 0, there exists a δ = δ(t0, ε) > 0 such that ‖z(t0)‖ < δ implies ‖z(t)‖ < ε
for all t ≥ t0. It is said to be asymptotically stable if it is stable, and for any t0 ∈ R, there exists
a δa = δa(t0) such that ‖z(t0)‖ < δa implies limt→∞z(t) = 0. It is said to be uniformly stable
if it is stable and δ(t0, ε) can be chosen independently of t0. It is uniformly asymptotically
stable if it is uniformly stable, and there exists a δa > 0 such that for any η > 0, there exists
a T = T(δa, η), such that ‖z(t0)‖ < δa implies ‖z(t)‖ < η for t ≥ t0 + T and t0 ∈ R. It is
exponentially stable if there exist anM > 0 and an α > 0 such that

‖z(t)‖ ≤M‖z(t0)‖e−α(t−t0). (4.4)

It is noted that exponential stability as defined above is also known as uniform
exponential stability in some literature (see, e.g., [71]). For a linear system, it is well known
that uniform asymptotic stability is equivalent to exponential stability [13, 52]. On the other
hand, even for linear time-invariant systems, it is possible for a system to be asymptotically
stable, but not exponentially stable, if the system is of neutral type [71–74].

For linear time-invariant systems, the stability is closely related to the characteristic
roots, which will be reviewed in the next section.

5. Characteristic Roots

The characteristic equation for the system described by (2.8) is

Δ(s) = det

(
sI −A0 −

K∑
k=1

e−rks(sDk +Ak)

)
= 0. (5.1)

Similarly, the characteristic equation for the system described by (3.7) is

Δ(s) = det

(
sIn −A −BE(s)
−C Im −DE(s)

)
= 0, (5.2)
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where

m =
K∑
k=1

mk,

B =
(
B1 B2 · · · BK

)
,

C =

⎛
⎜⎜⎜⎝
C1

C2
...
CK

⎞
⎟⎟⎟⎠,

(5.3)

D =

⎛
⎜⎜⎜⎝
D11 D12 · · · D1K

D21 D22 · · · D2K
...

...
. . .

...
DK1 DK2 · · · DKK

⎞
⎟⎟⎟⎠,

E(s) = diag
(
e−r1sIm1 e−r2sIm2 · · · e−rKsImK

)
.

(5.4)

The solutions to the characteristic equation will be known as the characteristic roots. Let

σ = sup{Re(s) | Δ(s) = 0}. (5.5)

It is known that σ is finite for time-delay systems of neutral type. The system is exponentially
stable if σ < 0. Indeed, the system trajectories in this case can be bounded by [57, 64]

‖z(t)‖ ≤M‖z(0)‖eσt (5.6)

for any σ > σ.
If σ > 0, then there exists at least one trajectory that grows exponentially, and the

system is obviously unstable. This case is sometimes known as “exponentially unstable” in
order to distinguish it from the case of polynomial growth associated with some cases of
σ = 0. The general case for σ = 0 is rather complicated and will be discussed in Section 12
later on.

In general, a time-delay system has an infinite number of characteristic roots.
However, as Δ(s) is an entire function, there can only be a finite number of characteristic
roots within any bounded domain [75]. These characteristic roots form root chains that are
rather easy to describe [24]. For the characteristic equation (5.1) or (5.2), there are two types
of root chains.

The first type is retarded chains. In a retarded chain, the characteristic roots fall in the
region

∣∣Re(s + μ log s)∣∣ < c (5.7)
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for sufficiently large |s|. Different retarded chains have different values of μ > 0 and c > 0.
As a consequence, there may only be a finite number of roots on the right of the vertical line
Re(s) = α in the complex plane for any given α.

The other type is neutral chains. In a neutral chain, the characteristic roots are bounded
by two vertical lines

c1 ≤ Re(s) ≤ c2, (5.8)

for sufficiently large roots. The positions of such vertical lines are determined by the
difference equation associated with the system. Specifically, in the case of (2.8), the associated
difference equation is

x(t) =
K∑
k=1

Dkx(t − rk), (5.9)

with the corresponding characteristic equation

Δ0(s) = det

(
I −

K∑
k=1

e−rksDk

)
= 0. (5.10)

The difference equation associated with (3.7) is

yk(t) =
K∑
j=1

Dkjyj
(
t − rj

)
, k = 1, 2, . . . , K, (5.11)

with the characteristic equation

Δ0(s) = det(I −DE(s)) = 0. (5.12)

If s0 is a solution of (5.10) or (5.12), then there is a series of corresponding characteristic roots
of (5.1) or (5.2), sk, k = 1, 2, . . ., |sk| → ∞, that approach the vertical line [57]

Re(sk) −→ Re(s0). (5.13)

Therefore, we can state the following.
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Theorem 5.1. A necessary condition for the time-delay system to be exponentially stable is

σ0 = sup{Re(s) | Δ0(s) = 0} < 0 (5.14)

for the associated difference equation. If σ0 > 0, then the time-delay system is exponentially unstable.

6. Stability of Difference Equations

From the discussions in the previous section, it is important to understand the stability
problem of difference equations (5.10) and (5.12). To emphasize the fact that the solution of
such equations are defined on t ∈ R rather than on discrete time, they are known as difference
equations of continuous time.

Let

Z = {Re(s) | Δ0(s) = 0}. (6.1)

Obviously,

σ0 = maxZ. (6.2)

Similar to differential-difference equations, a difference equation is exponentially stable if
σ0 < 0. If σ0 > 0, then the difference equation is exponentially unstable [57].

An important concept in understanding the stability problem of difference equations
is rational independence. The real numbers r1, r2, . . . , rK are said to be rationally independent
if any rational (or equivalently, integer) combination may vanish only if all the coefficients
vanish; that is,

K∑
k=1

αkrk = 0, αk rational
(
or equivalently, integers

)
, (6.3)

may be satisfied only if αk = 0 for all 1 ≤ k ≤ K. If r1, r2, . . . , rK are not rationally independent,
then they are rationally dependent, in which case we may always find a group of rationally
independent numbers τ1, τ2, . . . , τN , N < K, such that r1, r2, . . . , rK may be expressed as
rational (or integer) combinations of τ1, τ2, . . . , τN . In this case, τ1, τ2, . . . , τN are known as
a rationally independent basis. The number N is independent of the choice of the rationally
independent basis.WhenN = 1, then r1, r2, . . . , rK may all be expressed as integermultiples of
a single number, and they are known as commensurate (or commensurable in some literature).
If N ≥ 2, then they are incommensurate (or uncommensurable in some literature). For any
given r∗1 , r

∗
2 , . . . , r

∗
K and an arbitrarily small ε > 0, we may always find rationally independent

r1, r2, . . . , rK that satisfy

∣∣rk − r∗k∣∣ < ε, 1 ≤ k ≤ K. (6.4)

Henry [57] obtained the set Z in the general case, that is, when the delays are
integer combinations of rationally independent basis. He also observed that σ0 is in general
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a discontinuous function of the delays r1, r2, . . . , rK. Such discontinuity was also observed and
illustrated by examples by Melvin in [76].

In order to fully comprehend the issue, let’s concentrate on the difference equation
(5.9) for the moment. Hale [77] formulated the conditions for stability under arbitrarily small
delay variations. This formulation leads to the following theorem.

Theorem 6.1. The following four statements are equivalent.

(i) Equation (5.9) is exponentially stable for a fixed set of rationally independent delays r1 >
0, r2 > 0, . . . , rK > 0.

(ii) For a given nominal delays r01 > 0, r02 > 0, . . . , r0K > 0, and a small ε > 0, (5.9) is
exponentially stable for all delays r1, r2, . . . , rK that satisfy

∣∣∣rk − r0k
∣∣∣ < ε. (6.5)

(iii) Equation (5.9) is exponentially stable for arbitrary positive delays r1 > 0, r2 > 0, . . . , rK >
0.

(iv) The matrices D1, D2, . . . , DK satisfy

sup
0≤θk≤2π
k=1,2,...,K

ρ

(
K∑
k=1

eiθkDk

)
< 1, (6.6)

where ρ(·) is the spectrum radius of the matrix concerned.

If on the other hand,

sup
0≤θk≤2π
k=1,2,...,K

ρ

(
K∑
k=1

eiθkDk

)
> 1, (6.7)

then (5.9) with any fixed rationally independent delays r1 > 0, r2 > 0, . . . , rK > 0 is exponentially
unstable.

The first part of theorem, that is, the equivalence of the four statements, may be found
in [12, Theorem 6.1 of Chapter 9]. The last part may be found in [13]with a new proof about
the equivalence between (i) and (iv). In practice, there are always errors in estimating or
setting delays. If the errors of different delays vary independently, then the above theorem
applies. The equivalence of statements (ii) and (iii) is very disquieting; as far as the robust
stability is concerned, there is no difference between the case where the delays vary within an
arbitrarily small range (often known as practical stability or local strong stability) or the case
where the delays are allowed to assume any positive values (delay independent stability, or
stability independent of delays). This discontinuity is indeed at the root of many surprising
phenomena in many systems with delays.

Checking condition (6.6) is not easy in general. A practically computable condition is
given by Carvalho in [78] in the form of a linear matrix inequality, which was motivated by
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Lyapunov functional formulation on theH2 norm. As indicated by Boyd et al. [79], efficient
numerical methods based on interior point algorithm are available to solve such linear matrix
inequalities. The following condition, which is equivalent to one in [78], is from [80].

Proposition 6.2. The condition (6.6) is satisfied if there exist symmetric positive definite matrices
Sk, k = 1, 2, . . . , K such that

DT
K∑
k=1

SkD − diag
(
S1 S2 · · · SK

)
< 0, (6.8)

where

D =
(
D1 D2 · · · DK

)
. (6.9)

In (6.8), “<0” is used to indicate that the matrix on the left hand side is symmetric
negative definite. Similarly, “>” will be used to denote positive definiteness. If the difference
equation (5.9) is a scalar equation, then Dk, k = 1, 2, . . . , K are scalars, and (6.6) is reduced to

K∑
k=1

|Dk| < 1. (6.10)

If we apply the robust stability condition (6.6) to the system described by (5.11), we
may conclude the following.

Corollary 6.3. The system described by (5.11) is exponentially stable for all rk, |rk − r0k | < ε, k =
1, 2, . . . K if and only if

ρ0
Δ= sup
δk∈C,|δk |=1

1≤k≤K

ρ(DE(δ)) < 1,
(6.11)

where

E(δ) = diag
(
δ1Im1 δ2Im2 · · · δKImK

)
. (6.12)

Of course, the above is still valid if the delays are allowed to assume any positive
values in view of Theorem 6.1. If we relax the constraint |δk| = 1 in (6.11) to |δk| ≤ 1, we
obtain

sup
δk∈C,|δk |≤1

1≤k≤K

ρ(DE(δ)) ≥ ρ0.
(6.13)
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Those who are familiar with the structured singular value problem (see [56, 81–83]) may
recognize that the left hand side of (6.13) is equal to the structured singular value of the
matrix D under the structure described by the matrix E in (6.12) (multiple scalar blocks),

μ(D) =
1

min
{
ρ[E(δ)] | δk ∈ C, k = 1, 2, . . . , K, det(I −DE(δ)) = 0

} . (6.14)

Therefore,

ρ0 ≤ μ(D), (6.15)

and (6.11) can be guaranteed by

μ(D) < 1. (6.16)

It is well known that calculation of structured singular value is not easy. A sufficient
condition in the form of linear matrix inequality is given below [82].

Corollary 6.4. The condition (6.16), and therefore (6.11), is satisfied if there exist Sk ∈ R
mk×mk ,

Sk = STk > 0, k = 1, 2, . . . , K, (6.17)

such that

S −DTSD > 0, (6.18)

where

S = diag
(
S1 S2 · · · Sk

)
. (6.19)

The above condition may also be derived directly from (6.8) [54]. On the other hand,
it is interesting to point out that (6.6) may also be guaranteed by (6.16) with

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

D1 D2 · · · DK−1 DK

In 0 · · · 0 0
0 In · · · 0 0
...

...
. . .

...
...

0 0 · · · In 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(6.20)

and the uncertainty structure

E(δ) = diag
(
δ1In δ2In · · · δKIn

)
. (6.21)
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The linear matrix inequality form of stability conditions (6.18) and (6.8) are very
useful in formulating Lyapunov-Krasovskii functional stability conditions of linear time-
delay systems of neutral type [54, 80]. It is also interesting that another condition given by
Fridman [84] is also equivalent to (6.18) as shown in the appendix of [58]. For the stability
problem of nonlinear difference equation of continuous time using Lyapunov method, an
interesting study is given by Pepe [85]. It is noticed that the criteria is not as tight as (6.18) if
applied to linear systems. See also the recent book by Shaikhet [86] for a more comprehensive
study.

7. Continuity Issue and Practical Stability

Continuous dependence of characteristic roots on the system parameters is the basis of many
important techniques used in the stability analysis. Examples of these techniques include
root-locus [87] and D-decomposition [88] (also known as D-partition or D-subdivision).
Indeed, it is well known that if the leading coefficient of a polynomial does not vanish, the
roots of the polynomial depend on the coefficients continuously. When the root concerned
is simple, then it is an analytical function of coefficients. Even around a multiple root, a
Puiseux series around the nominal value is possible (see [89] and Part II, Chapter 5 of [90]).
An example of discontinuity due to the vanishing leading coefficient is

εs2 + s + 1 = 0. (7.1)

The two roots for nonzero ε are

s1 =
−1 +√

1 − 4ε
2ε

= −1 + ε + o(ε),

s2 =
−1 − √

1 − 4ε
2ε

= −1 + 1
ε
+ o(1).

(7.2)

While s1 is a continuous function of ε, s2 is obviously discontinuous at ε = 0. However, such
points are rather easy to discover. An example of discontinuity caused by vanishing leading
coefficient in time-delay systems is given in [7]. The situation for time-delay systems also has
some similarity with this example; at the critical parameter values, some characteristic roots
may have discontinuity, while other roots change continuously with the parameters.

For time-delay systems of retarded type, although new roots may suddenly appear
with infinite magnitudes near some parameter values, such new roots always appear at far
left of the complex plane (i.e., with −∞ real parts) and do not affect the stability analysis.
Therefore, continuous dependence of characteristic roots on the system parameters is widely
used in stability analysis. One of such techniques is again D-decomposition that identifies
the parameter values that correspond to the presence of imaginary roots. These values
divide the parameter space into regions with fixed number of right half plane roots, from
which the stable parameter regions may be easily obtained [29, 91]. Especially, delays may
also be used as parameters, which is important as the case of zero delay is reduced to a
polynomial equation, which is rather easy to analyze. For the single delay case, see [92, 93],
and the polynomial coefficient part of [94]. For multiple commensurate delay case, see [95].
For multiple delay case, see [96–99]. Another interesting method that is matrix based is
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formulated by Chen et al. [100]. Indeed, the book by Stépán [34] contains many practical
examples of such analysis. Themore recent book byMichiels andNiculescu [35] also contains
some more recent such analysis.

Attempts have also been made in recent years to extend D-decomposition method to
time-delay systems of neutral type. See, for example, [101, 102]. Obviously, such analysis
includes the systems of retarded type as a special case and is more general. However, as
σ defined in (5.5) may be discontinuous with respect to the delays for such systems, the
theoretical basis needs to be carefully examined. Indeed, Cooke and van den Driessche [94]
studied the characteristic equation of the form

P(s) +Q(s)e−rs = 0, (7.3)

with P(s) a higher order polynomial than the polynomial Q(s). This obviously represents a
time-delay system of retarded type. However, in an attempt to extend the result to the more
general case of analytical functions, they inadvertently included the possibility of systems of
neutral and even advanced type, rendering the result invalid as was shown by Boese [103]
and acknowledged by Cooke [104].

For time-delay systems of neutral type, as the parameters change, there is a possibility
of sudden appearance of an infinite number of characteristic roots with positive real parts
without going through the imaginary axis. This can be traced back to the discontinuity of
the spectrum of the associated difference equation. As σ0 defined in (5.14) for a difference
equation is in general discontinuous with respect to delays, Theorem 5.1 and the discussions
preceding this theorem indicate that σ defined in (5.5) for the complete system is also
a discontinuous function of delays in general. This renders the stability analysis rather
complicated. However, if we restrict ourselves to robust stability under arbitrarily small
deviations of parameters, the situation is much better. We will use the term in [4–7] and
call such robust stability as practical stability, as defined below.

Definition 7.1. Consider a system with parameter α. The system is said to be practically stable
at α = α0 if there exists an ε > 0 such that for any permissible α with ‖α − α0‖ < ε, the system
remains exponentially stable.

The parameter above should be interpreted as a vector. Therefore, the case of multiple
parameters is also covered. Obviously, the main interest in discussing the practical stability
problem is for the parameter vector to include some delays. The permissible deviation should
be specifically defined according to the specific problem. For example, at zero delay, we
should define a permissible delay as positive in order to avoid creating an inherently unstable
time-delay system of advanced type. In some cases, deviation of different components of
parameter vector α may be constrained to satisfy certain linear relations. As shown in [55],
systems with delays that are integer combinations of independent parameters may always
be transformed to ones with the independent parameters as delays. This process will also be
illustrated in the problem of discrete implementation of distributed-delay feedback control to
be covered in Section 11. Therefore, we will only consider the case of independent parameter
deviation in this section.

Let Δ0(s) = 0 be the characteristic equation of the difference equation that depends on
the delays rk, k = 1, 2, . . . , K. Then σ0 defined in (5.14) is in general a discontinuous function
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of rk and may be denoted as σ0(r1, r2, . . . , rK). Define

σ0p(r1, r2, . . . , rK) = lim
ε→ 0+

max
‖r̂k−rk‖<ε
1≤k≤K

σ0(r̂1, r̂2, . . . , r̂K). (7.4)

Then, similar to the case discussed in [57], σ0p(r1, r2, . . . , rK) is a continuous function of the
delays rk. Obviously, practical stability requires

σ0p(r1, r2, . . . , rK) < 0, (7.5)

which is not the case for conventional stability. Therefore, practical stability analysis is much
easier in terms of continuity. As all the parameters are subject to errors, requiring practical
stability is also essential in practice.

We may also handle the spectrum of the overall system in a similar manner and define

σp(r1, r2, . . . , rK) = lim
ε→ 0+

max
‖r̂k−rk‖<ε
1≤k≤K

σ(r̂1, r̂2, . . . , r̂K). (7.6)

However, it is typically more convenient to consider the spectrum related to the difference
equation and the remaining characteristic roots separately. Indeed, if the delays r1, r2, . . . , rK
are subject to independent errors, then a small deviation may render them to be rationally
independent. In this case, the conditions for (7.5) can be written in a form that only depends
on the coefficient matrices, and independent of the delays, as shown in Section 6. If the
condition (7.5) is satisfied, then all the characteristic roots that satisfy

Re(s) > −ε (7.7)

for some small ε > 0 are continuous functions of system parameters. Therefore, a continuity
argument can be used for both the quantity σ0p and those characteristic roots that satisfy
(7.7).

Based on the above discussion, a common practice in using D-decomposition method
for stability analysis of time-delay systems of neutral type is to guarantee the satisfaction of
(7.5), and keep track of the number of right half plane characteristic roots as the parameter
changes. For example, to repair the results of [94], Boese [103] suggested restricting to neutral
type systems that satisfy certain additional inequality ((2.4) in [103]). It can be easily seen that
this inequality guarantees the stability of the associated difference equation. Other examples
of enforcing this condition are Lemma 12 in [105], (2.3) in [106], Assumption 3 in [107], and
Assumption 3 in [108].

8. Small Delays

An immediate application of the theory developed so far is the stability of a stable delay-
free system when it is subjected to small delays. Traditionally, a system with the possibility
of instability under small delays is classified as “not well-posed” [3]. For a period, there
had been substantial interest on this issue. This also includes infinite-dimensional systems
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described by partial differential equations [109, 110]. Some studies on infinite-dimensional
systems [111] have very similar formulations and conclusions with finite-dimensional
systems [11]. The discussions in this paper will be restricted to finite-dimensional systems.

Let a linear system of nth order be exponentially stable when it does not contain
any delay. Let there be K components of the system that may be subjected to small delays
r1, r2, . . . , rK. Let the kth delay component bemk-dimensional. Wewant to study if there exists
a small ε > 0, such that the system remains exponentially stable for all rk ∈ (0, ε).

This problem can be written in a standard form if we use the process of “pulling
out delays.” The process begins with removing all the delay elements. The output of each
delay becomes an input to the remaining part of the system. Similarly, the input to each delay
becomes an output to the remaining part of the system. The part of system with all the delays
removed may be written in the standard state-space form as

ẋ(t) = Ax(t) +
K∑
j=1

Bjuj(t),

yk(t) = Ckx(t) +
K∑
j=1

Dkjuj(t), k = 1, 2, . . . , K,

(8.1)

where x(t) ∈ R
n is the state variable, the input uk(t) ∈ R

mk was the output of kth delay
element, and the output yk(t) ∈ R

mk was the input to the kth delay element. Reconnect the
delay elements in their original locations. This results in

uk(t) = yk(t − rk), k = 1, 2, . . . , K. (8.2)

Equations (8.1) and (8.2) now completely describe the original system. A substitution of (8.1)
by (8.2) yields the final description of the system

ẋ(t) = Ax(t) +
K∑
j=1

Bjyj
(
t − rj

)
, (8.3)

yk(t) = Ckx(t) +
K∑
j=1

Dkjyj
(
t − rj

)
, k = 1, 2, . . . K, (8.4)

which is in the standard form of coupled differential-difference equations.
When rk = 0 for all k, there are n characteristic roots for the system. These characteristic

roots are continuous functions of delays and will remain on the left half of the complex
plane when ε is small. However, as delays increase from zero, an infinite number of new
characteristic roots appear. The locations of these roots depend on the associated difference
equation. Therefore, the only condition that needs to be checked to guarantee exponential
stability is the stability of the associated difference equation (8.4). The necessary and sufficient
condition for this stability is the satisfaction of (6.11). A sufficient condition is the satisfaction
of (6.16) with the uncertainty structure defined by (6.12).

When all the delays are single-input single-output, Meinsma et al. [11] showed that
the condition (6.12) is necessary and sufficient in the sense of input-output stability. It can be
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shown that this is also necessary and sufficient in the sense of exponential stability. To do so,
we first need the following lemma.

Lemma 8.1. Let G ∈ C
n×n be partitioned to

G =
(
H P

)
, (8.5)

whereH is a column vector. Then

sup
δ∈C,|δ|=1

ρ
(
δH P

)
= sup

δ∈C,|δ|≤1
ρ
(
δH P

)
. (8.6)

Proof. Let

Δδ(s) = det
[
sI − (

δH P
)]
. (8.7)

Then Δδ(s) is affine with δ for each fixed s. Let the quantity on the left hand side of (8.6) be
ρ0. For a small ε > 0, form a contour

Γ =
{(
ρ0 + ε

)
eiθ | θ ∈ [0, 2π]

}
. (8.8)

As s assumes a fixed point on this contour, the set

Cs = {Δδ(s) | δ ∈ C, |δ| = 1} (8.9)

forms a circle. This circle cannot enclose the origin. (Otherwise, for large real α, since Δδ(αs)
is dominated by (αs)n, the origin must be outside of the curve {Δδ(αs) | δ ∈ C, |δ| = 1}. By
continuity, there must exists a α > 1 and |δ| = 1 to satisfy Δδ(αs) = 0. But this implies

sup
δ∈C,|δ|=1

ρ
(
δH P

) ≥ α(ρ0 + ε) > ρ0, (8.10)

a contradiction.) The set

Ds = {Δδ(s) | δ ∈ C, |δ| ≤ 1} (8.11)

consists of all the points on and inside of Cs. As s goes around Γ, the Argument principle [75]
and

sup
δ∈C,|δ|=1

ρ
(
δH P

)
< ρ0 + ε (8.12)
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imply that each point on Cs goes around the origin exactly n times. But this also means that
each point on Ds also goes around the origin n times. Therefore, for any |δ| ≤ 1, all n roots of
Δδ(s) are inside Γ; that is,

sup
δ∈C,|δ|≤1

ρ
(
δH P

)
< ρ0 + ε. (8.13)

As ε is arbitrary, we can conclude that

sup
δ∈C,|δ|≤1

ρ
(
δH P

) ≤ ρ0. (8.14)

On the other hand, it is obvious that

sup
δ∈C,|δ|≤1

ρ
(
δH P

) ≥ sup
δ∈C,|δ|=1

ρ
(
δH P

)
= ρ0. (8.15)

This proves (8.6).

Apply the above lemma for G = D, and δ = δk with δj , j /= k fixed, and repeat the
process for each k; we arrive at the following proposition.

Proposition 8.2. For the system (8.3) and (8.4) with all yk(t) ∈ R, let

D =

⎛
⎜⎜⎜⎝
D11 D12 · · · D1K

D21 D22 · · · D2K
...

...
. . .

...
DK1 DK2 · · · DKK

⎞
⎟⎟⎟⎠, (8.16)

E(δ) = diag
(
δ1 δ2 · · · δK

)
. (8.17)

Then,

sup
δk∈C,|δk |=1

1≤k≤K

ρ(DE(δ)) = μ(D),
(8.18)

where the uncertainty structure is defined by E(δ).

The conclusion is obvious from the above proposition and is stated below.

Corollary 8.3. If the system described by (8.3) and (8.4) is exponentially stable for rk = 0, k =
1, 2, . . . , K, and yk(t) ∈ R, k = 1, 2, . . . , K. Then, there exists an ε > 0 such that the system is
exponentially stable for all rk ∈ (0, ε) if and only if μ(D) < 1, where the uncertainty structure is
defined in (8.17).

Another interesting result regarding small delay is on the stabilization of difference
equations. Theoretically, such a stabilization is possible only if a derivative is used [13, 112].
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Figure 1: Smith predictor.

Logemann and Townley [113] showed that if the open-loop difference equation is unstable,
then the stabilized system can be destabilized by an arbitrarily small input delay. The
instability problem caused by delay mismatch in Smith predictor to be discussed in the next
section is of similar nature.

9. Delay Sensitivity of Smith Predictor

Smith predictor, proposed in [114], is a well-known control method for processes with a delay.
This section is devoted to illustrating how the theory developed so far can be used to solve
the practical stability problem of Smith predictor delay mismatch. Although this problem
has been solved completely in the literature, the method presented here is much simpler.
The structure of Smith predictor is shown in Figure 1, where Gp(s)e−Ts is the plant to be
controlled,Gm(s) is an estimatedmodel of the plant without delay,Gc(s) is a control designed
based on the estimated model, and τ is the estimated delay.

In the ideal case, the model should be exactly equal to the plant,

Gm(s) = Gp(s),

τ = T,
(9.1)

in which case, if the system is single-input single-output, the closed-loop transfer function
can be calculated as

Gcl(s) =
Gc(s)Gp(s)e−Ts

1 +Gc(s)Gp(s)
. (9.2)

The above equation shows why the Smith predictor is so attractive. One can design the
controller based on the plant model without delay. The resulting closed-loop transfer function
under the ideal case has exactly the same dynamics as if the control Gc(s) is applied to a
system without delay Gp(s), and the delay may be considered as taken out of the feedback
loop. Numerous extensions and analyses have been made on Smith predictor over the years;
see [5, 115–117] and the references therein.

In the single-input single-output case, it was shown by Palmor [5] that the closed-
loop system may become unstable under arbitrarily small deviation of the estimated delay
τ from the plant delay T . A condition for this not to happen, which Palmor called practical
stability, is derived using Nyquist stability criterion. In the following, it will be shown that
this phenomenon is closely related to the discontinuity of the spectrum of the associated
difference equation.
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Let the state-space description of e−TsGp(s) be

ẋp(t) = Apxp(t) + Bpu(t − T), (9.3)

y(t) = Cpxp(t) +Dpu(t − T), (9.4)

that of (1 − e−τs)Gm(s) be

ẋm(t) = Amxm(t) + Bm[u(t) − u(t − τ)], (9.5)

v(t) = Cmxm(t) +Dm[u(t) − u(t − τ)], (9.6)

and that of Gc(s) be

ẋc(t) = Acxc(t) + Bcw(t), (9.7)

u(t) = Ccxc(t) +Dcw(t). (9.8)

Then, the closed-loop system can be described by the above equations with the additional
constraint

w(t) = r(t) − v(t) − y(t). (9.9)

This is in the form of coupled differential-difference equations. The associated difference
equations are (9.4), (9.6), (9.8), and (9.9), where r(t), xp(t), xm(t), and xc(t) are the inputs
to the difference equations. Eliminating the variables y(t), v(t), and w(t) in these equations
yields

u(t) = (I +DcDm)−1
[
DcDmu(t − τ) −DcDpu(t − T)

]

+ (I +DcDm)−1
[
Ccxc(t) −DcCmxm(t) −DcCpxp(t) +Dcr(t)

]
.

(9.10)

Applying the condition (6.6) to the above, we may conclude the following.

Theorem 9.1. If the system described by (9.3) to (9.9) is exponentially stable for τ = T , then there
exists an ε > 0 such that the system remains exponentially stable for any τ ∈ (T − ε, T + ε); that is,
the system is practically stable under small delay deviation, if and only if

sup
0≤θ≤2π

ρ
[
(I +DcDm)−1Dc

(
eiθDm +Dp

)]
< 1. (9.11)

In the above, we have used the fact that multiplying e−iθ2 does not change the spectrum
radius of a matrix, and

{
ei(θ1−θ2) | 0 ≤ θk ≤ 2π, k = 1, 2

}
=

{
eiθ | 0 ≤ θ ≤ 2π

}
. (9.12)
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As discussed in Section 6, the quantity on the left hand side of (9.11) may be bounded by a
structured singular value. Therefore, the result can be related to the known results given in
[6, 7]. We may apply (6.8) to (9.11) to obtain a sufficient condition in the form of linear matrix
inequality.

If Dp = Dm, then

ρ
[
(I +DcDm)−1Dc

(
eiθDm +Dp

)]
=

∣∣∣eiθ + 1
∣∣∣ρ[(I +DcDm)−1DcDm

]
. (9.13)

In this case, (9.11) reduces to

ρ
[
(I +DcDm)−1DcDm

]
<

1
2

(9.14)

since

{∣∣∣eiθ + 1
∣∣∣ | 0 ≤ θ ≤ 2π

}
= [0, 2]. (9.15)

The condition (9.14) is given in Proposition 12 of [8]. The sufficient part may be found in [7].
IfGp(s) is single-input single-output, then all the matrices in (9.11) are scalars, and the

condition (9.11) reduces to

∣∣∣∣ Dc

1 +DcDm

∣∣∣∣(|Dm| +
∣∣Dp

∣∣) < 1. (9.16)

If Dm = Dp, then the above reduces to Proposition 4 of [8]. The sufficient part may be found
in [5].

10. Neutral Systems That Behave as Retarded Systems

It is interesting to note that some time-delay systems expressed in the form of neutral type
actually behave like one of retarded type. The first type of such systems have a difference
equation that has empty spectrum. Consider the system described by (2.8). If the associated
difference equation (5.9) has empty spectrum, that is,

Δ0(s) = 1, ∀s ∈ C, (10.1)

then, as shown by Henry in [118], the solutions to (5.9) vanishes for t ≥ rn for any initial
condition. As shown by Stoorvogel et al. in [119], we may make a variable transformation

z(t) = x(t) −
K∑
k=1

Dkx(t − rk). (10.2)
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The condition (10.1) means that the transformation (10.2) is a valid one as x(t) may be
expressed by a linear combination of z(t + θ), −nr ≤ θ ≤ 0. Indeed, a Laplace transform
of (10.2) yields

Z(s) = H(s)X(s), (10.3)

where

H(s) = I −
K∑
k=1

e−rksDk. (10.4)

This equation can be solved to yield

X(s) = [H(s)]−1Z(s). (10.5)

From

Δ0(s) = det[H(s)] = 1, (10.6)

it can be seen that [H(s)]−1 is a polynomial matrix of e−rks with order not higher than n − 1.
Therefore, x(t) can be expressed as a linear combination of z(t) and its delayed version up
to (n − 1)r. Equation (2.8) can thus be transformed to a differential-difference equation of
retarded type.

Similarly, for the coupled differential-difference equations (3.7), if the difference
equation (5.11) satisfies (10.1), y(t) can be expressed as a linear combination of Cx and its
delayed version, and the system can be expressed as a differential-difference equation of
retarded type in x(t).

The second type of systems that behave like those of retarded type involve neutral
distributed delay. Consider the system

d

dt

[
x(t) −

∫0

−r
D(θ)x(t + θ)dθ

]
=

K∑
k=0

Akx(t − rk). (10.7)

If D(θ) is of bounded variation, then an integration by parts yields

d

dt

∫0

−r
D(θ)x(t + θ)dθ =

∫0

−r
D(θ)

∂

∂θ
[x(t + θ)]dθ

= D(0)x(t) −D(−r)x(t − r) −
∫0

−r
d[D(θ)]x(t + θ).

(10.8)

Using the above, (10.7) is transformed to one of retarded type.
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More fundamental understanding of the nature of systems of neutral or retarded type
can be gained from an abstract formulation. Let the state of the system (10.7) at time t be z(t).
Then solutions can be represented by a strongly continuous operator T(t),

z(t) = T(t)z(0). (10.9)

Similarly, the solutions to the associated difference equation (excluding the neutral distrib-
uted delay) can be represented as

z(t) = TD(t)z(0). (10.10)

As shown by Henry [57], T(t) can be viewed as a compact perturbation of TD for sufficiently
large t. The operator TD(t), if the spectrum is not empty, is not compact. From this point of
view, wemay classify a time-delay system as of retarded type whenever the solution operator
T(t) is compact for sufficiently large t. The difference is also obvious from the spectrum of
T(t); while the spectrum of the infinitesimal generator of T(t) contains only eigenvalues, it is
not true for the spectrum of T(t) itself. Indeed, for systems of neutral type, T(t) also contains
continuous spectrum [57]. Hale and Verduyn Lunel [14] discussed the issue from the point
of view of the essential spectrum of T(1) that cannot be changed by compact perturbations.
The stability is determined by eigenvalues (which are continuous functions of parameters)
of T(1) if and only if the essential spectrum of T(1) is less than 1.

On the other hand, it is sometimes desirable to express a systems of retarded type
in the form of neutral type. For example, in analyzing additional dynamics due to model
transformation [120, 121], a more clear understanding can be obtained by writing it in the
form of a differential equation coupled with a functional equation (distributed delay); see
[122] and Section 5.3.3 of [30]. The distributed-delay feedback control to be discussed next
is another such example. Nonetheless, it is important to keep in mind the fundamental
difference of these two types of systems.

11. Discrete Implementation of Distributed-Delay Feedback Control

11.1. Basic Formulation

Distributed-delay feedback control is an important method to control systems with delays.
When the nominal system is unstable, the Smith predictor using the architecture shown
in Figure 1 involves unstable pole-zero cancellation, and an alternative implementation
using distributed-delay feedback control may be used to avoid this problem [115]. Another
commonmethod to control systemswith input or output delays is finite spectrum assignment
[2, 47, 123, 124]. The system with single input-delay and distributed-delay feedback control
may be expressed as

ẋ(t) = Ax(t) + Bu(t − r), (11.1)

u(t) = Fx(t) +
∫0

−r
G(θ)u(t + θ)dθ. (11.2)
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Exact implementation of control (11.2) is very difficult, if not impossible, due to the
integration term. Some literature suggests using discrete delays to approximate the
distributed delay in (11.2) [2]. The basic idea is to divide the interval [−r, 0] to K small
intervals, [θk, θk−1], k = 1, 2, . . . , K, with

0 = θ0 > θ1 > θ2 > · · · > θK = −r, (11.3)

and to approximate the integration in each small interval [θk, θk−1]. We may choose a point
in each interval

−rk ∈ [θk, θk−1]. (11.4)

Common choices are

−rk = θk, θk−1, or
θk + θk−1

2
. (11.5)

When all the intervals are sufficiently small, it seems reasonable to approximate any u(t + θ)
with θ ∈ [θk, θk−1] by u(t − rk). Therefore, (11.2) may be approximated by

u(t) = Fx(t) +
K∑
k=1

Gku(t − rk), (11.6)

where

Gk =
∫θk−1

θk

G(θ)dθ. (11.7)

Less accurate method of obtaining Gk may be used. For example, it is common to use

Gk = G(−rk)(θk−1 − θk), (11.8)

leading to a rectangular rule of numerical integration. As was discussed by Zhong [18],
(11.7) compares favorably with (11.8) in terms of accuracy, although the difference is not
fundamental. We will call (11.6) quasi-rectangular implementation, and any choice of Gk and rk
along this line will be known as a rectangular-like implementation. If G(θ)u(t + θ) is Riemann
integrable, then for any rectangular-like implementation, the expression on the right hand
side of (11.6) converges to that of (11.2) as hmax → 0, where

hmax = max
1≤k≤K

(θk−1 − θk). (11.9)



ISRN Applied Mathematics 27

Alternatively, we may use [u(t + θk) + u(t + θk−1)]/2 to approximate u(t + θ), θ ∈
[θk, θk−1]. As a result, (11.6) should be replaced by

u(t) = Fx(t) +
K∑
k=0

Hku(t − rk), (11.10)

where

H0 =
1
2

∫0

θ1

G(θ)dθ,

Hk =
1
2

∫θk−1

θk+1

G(θ)dθ, 1 ≤ k ≤ K − 1,

HK =
1
2

∫θK−1

θK

G(θ)dθ,

(11.11)

rk = −θk, k = 0, 1, . . . , K. (11.12)

Similarly, a less accurate choice is to use

H0 = −1
2
(θ0 − θ1)G(0),

Hk =
1
2
(θk−1 − θk+1)G(θk), 1 ≤ k ≤ K − 1,

HK =
1
2
(θK−1 − θK)G(θK),

(11.13)

which becomes the trapezoidal rule of numerical integration. Again, there is no fundamental
difference between the more accurate expression (11.11) and the slightly less accurate
expression (11.13). However, in this case, the feedback rule (11.10) is not well posed as the
nonzero coefficient H0 at r0 = 0 violates the uniform nonatomic requirement discussed in
Section 2. This problem can be avoided if the size of the interval [θ1, 0] is sufficiently small,
in which caseH0 is small, and I −H0 is invertible. We may solve for u(t) in (11.10) to obtain
a well-posed implementation rule,

u(t) = Cx(t) +
K∑
k=1

Dku(t − rk), (11.14)

where

C = (I −H0)−1F,

Dk = (I −H0)−1Hk, k = 1, 2, . . . , K,

rk = −θk.

(11.15)
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We will call (11.14) quasi-trapezoidal implementation. In practice, there may also be small
deviation of rk. Any of these implementations will be known as a trapezoidal-like
implementation. Obviously, if G(θ)u(t + θ) is Riemann integrable, then for any trapezoidal-
like implementation, the expression on the right hand side of (11.10) or (11.14) converges to
that of (11.2) as hmax → 0.

For a uniform gridding

θk = −kr
K
, (11.16)

it was pointed out in [15, 16] that instability was observed even in numerical simulation
when control rules similar to (11.6) or (11.14) are used in place of (11.2) even when hmax

becomes very small. The problem was declared by Richard in the survey paper [17] as one of
the open problems in the control of time-delay systems. Significant insight has been gained
since then [10, 18, 125, 126], and alternative implementation strategies have been proposed
[10, 126–128]. This section will only discuss the stability property of such systems and will
not discuss improvement of implementation. The material presented here is more general
and many results are often more precise.

11.2. Fundamental Limitation for General Case

Consider the internal dynamics of the distributed-delay feedback (11.2),

u(t) =
∫0

−r
G(θ)u(t + θ)dθ. (11.17)

It is exponentially stable if and only if all the roots of its characteristic equation

Δd(s) = det

(
I −

∫0

−r
eθsG(θ)dθ

)
= 0 (11.18)

are on the strict left half plane. A fundamental limitation of discrete implementation is due to
this fact.

Theorem 11.1. Let the matrix function G(θ) be Riemann integrable in [−r, 0]. If the internal
dynamics of (11.17) is exponentially unstable, then the feedback control system consisting of (11.1)
and a feedback control using either a rectangular-like implementation (11.6) or a trapezoidal-like
implementation (11.14) is exponentially unstable for a sufficiently small hmax (defined in (11.9)).

Proof. If (11.17) is exponentially unstable, then there exists a s0, Re(s0) > 0, such that (11.18)
is satisfied for s = s0. The functionΔd(s) is an entire function that is not a constant. Therefore,
the order of root s0 is finite, and there is an a > 0 such that Δd(s)/= 0 for any s in the region
0 < |s − s0| ≤ a. We may obviously make

a < Re(s0). (11.19)
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Let

Γ = {s ∈ C | |s − s0| = a}. (11.20)

Since Γ is compact, we may define

b = min{|Δd(s)| | s ∈ Γ}. (11.21)

Obviously

b > 0. (11.22)

In the compact set Γ, as either rectangular-like implementation or trapezoidal-like imple-
mentation can approximate the integration in (11.18) to arbitrary accuracy with sufficiently
small hmax, the related quantity Δd(s) may also be approximated to arbitrary accuracy. To be
definite, consider the quasi-trapezoidal implementation. There exists a ĥ, such that for any
hmax ≤ ĥ,

|Δim(s) −Δd(s)| < b

2
, for s ∈ Γ, (11.23)

where

Δim(s) = det

(
I −

K∑
k=1

Dke
rks

)
. (11.24)

However, according to Rouché’s theorem [75], the inequality (11.23) implies that Δim(s) has
the same number of roots as Δd(s) within the region enclosed by Γ, which is completely on
the right half complex plane due to (11.19). Therefore, Δim(s) has at least one right half plane
root. As

Δim(s) = 0 (11.25)

is the characteristic equation of the difference equation

u(t) =
K∑
k=1

Dku(t − rk), (11.26)

this difference equation is exponentially unstable. However, according to Theorem 5.1, this
alsomeans that the complete system consisting of (11.1) and (11.14) is exponentially unstable.

The special case of the above theorem with uniform gridding and finite spectrum
assignment can be found in [125]. The above theorem gives a fundamental limitation of any
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x(t)
C + u(t)

u(t − h)

u(t − 2h)

D1

D2

DK−1

DK

u(t − (K − 1)h)

Delay h

u(t − h)

u(t −Kh)

u(t − 2h)

...

...

Figure 2: Implementation to enforce proportional delays.

discrete implementation of a distributed-delay feedback control system. We may understand
the situation by reversing the role of the plant dynamics (11.1) and the controller dynamics
(11.2) or its discrete implementation, such as (11.14), and considering x as the input to the
“plant” (11.2) or its discretized version (11.14). In the case of (11.2), as its solution operator
is compact, it is possible for an appropriate (11.1) to make the whole system stable. On the
other hand, as the solution operator for (11.14) is not compact, no linear differential equation
in the form of (11.1) may stabilize it as its unstable essential spectrum cannot be changed by
a compact operator.

11.3. Commensurate Delays

The most favorable implementation is using commensurate delays. Imagine if we have a
multichanneled device that delays the inputs in all channels by h. Like any device, there is
bound to be errors. However, the delays for all channels will be identical. If such a device is
available, then we can imagine implementing the feedback law as shown in Figure 2. In this
case, when error is considered, the discrete delays become

rk = kh, (11.27)

h =
r

K
+ εh, |εh| < ε. (11.28)

The proportional relation (11.27) is guaranteed by the structure of the system and does not
contain any error. Although the delays still contain errors, they are not independent.

Introduce the variable

ŷ1(t) =

⎛
⎜⎜⎜⎜⎝

y1(t)

y2(t)
...

yK(t)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

u(t)

u(t − h)
u(t − 2h)

...
u(t − (K − 1)h)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, ŷ2(t) = yK(t). (11.29)
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Then, (11.1) and (11.14) become

ẋ(t) = Ax(t) + B̂

⎛
⎝ ŷ1(t − h)
ŷ2

(
t − ĥ

)
⎞
⎠, (11.30)

(
ŷ1(t)

ŷ2(t)

)
= Ĉx(t) + D̂

⎛
⎝ ŷ1(t − h)
ŷ2

(
t − ĥ

)
⎞
⎠, (11.31)

where

ĥ = r − (K − 1)h =
r

K
− (K − 1)εh, (11.32)

B̂ =
(
0 0 · · · 0 B

)
,

Ĉ =

⎛
⎜⎜⎜⎝
C
0
...
0

⎞
⎟⎟⎟⎠,

D̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

D1 D2 · · · DK−1 DK 0
I 0 · · · 0 0 0
0 I · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · I 0 0
0 0 · · · I 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(11.33)

Let

D̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

D1 D2 · · · DK−1 DK

I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

⎞
⎟⎟⎟⎟⎟⎟⎠
. (11.34)

Then

D̂ =

(
D̃ 0
En 0

)
, (11.35)

where

En =
(
0 0 · · · 0 I 0

)
. (11.36)
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Although the delays h and ĥ are not exactly independent, considering them as independent
does not increase the conservatism as the last column block of D̂ vanishes. Indeed, under this
assumption, the condition for exponential stability of the difference equation (11.31) for all
permissible small delay errors becomes

max
δk∈C

|δk |=1
ρ
(
D̂E(δ1, δ2)

)
= max

δ1∈C

|δ1|=1
ρ
(
D̂E(δ1, 0)

)
= ρ

(
D̃

)
< 1, (11.37)

or

max

{
|λ|

∣∣∣∣∣det
(
λKI −

K∑
k=1

λK−kDk

)
= 0

}
< 1. (11.38)

It is noticed that the above condition is independent of the delay error εh.
To get a sense of how well this implementation works, consider the special case of the

example discussed in [10, 15, 16], which is restated below.

Example 11.2. The system with scalar variables

ẋ(t) = x(t) + u(t − r) (11.39)

is stabilized using the following distributed-delay feedback control using finite spectrum
assignment method:

u(t) = −2
[
erx(t) +

∫0

−r
e−θu(t + θ)dθ

]
. (11.40)

This system has a single characteristic root at −1, and therefore the system is expo-
nentially stable. To evaluate the stability of the feedback control internal dynamics

u(t) = −2
∫0

−r
e−θu(t + θ)dθ, (11.41)

consider the characteristic equation

1 + 2
∫0

−r
e(s−1)θdθ = 0, (11.42)

or

1 +
2
(
1 − e−r(s−1))
s − 1

= 0. (11.43)

It is easily seen that the system is stable for sufficiently small r > 0. The smallest delay r
for the above equation to have imaginary solutions can be obtained by letting s = jω in
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Table 1

K 2 3 5 10 15 100 1000
rmd 1.3863 1.0920 1.0000 0.9684 0.9628 0.9585 0.9584
rma 0.921 0.920 0.909 0.926 0.935

the above equation and solving the resulting equation. This r must be the positive solution of
the equation

2er cos
(
r
√
4e2r − 1

)
− 1 = 0 (11.44)

such that

s = i
√
4e2r − 1 (11.45)

is indeed a solution of (11.43). This can be obtained numerically as

r = rmax = 0.958399, (11.46)

and the corresponding imaginary characteristic roots are

s = ±i5.118262. (11.47)

Consider now the discrete implementation of the control law (11.40) using the quasi-
trapezoidal method (11.14). The coefficients can be easily calculated as

C = −2e(K−1)r/K,

Dk = −e(k−2)r/K
(
e2r/K − 1

)
, 1 ≤ k ≤ K − 1,

DK = −e(K−2)r/K
(
er/K − 1

)
.

(11.48)

Equation (11.37) or (11.38) may be used to obtain the maximum delay so that the difference
equation (11.31) is exponentially stable. The values for various K are listed in Table 1 as rmd.

It can be seen from Table 1 that rmd indeed approaches rmax given in (11.46) as K
increases.

For the overall system, as the stability is not very sensitive to the retarded delay ĥ,
we may analyze the system assuming ĥ = h. Theoretically the stability of such a system
may be checked using such frequency domain methods as [95]. However, for a higher
order system or with a large K, such analysis is rather unrealistic except some very special
cases. On the other hand, a Lyapunov-Krasovskii functional method described in [52] may
be used for this purpose. For the system in Example 11.2, using N = 3 (according to the
convention used in [52]), the maximum delays to retain exponential stability for various
K up to 15 were obtained. The results are also listed in Table 1 as rma. It can be seen that
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as K increases, the maximum delay allowed for stability of the overall system approaches
that for the difference equation. This is expected as for a larger K, the discrete delay closely
approximates the distributed delay, and the only limiting factor is due to the stability of the
difference equation.

It should be pointed out that the theory covers only the case for largeK. No conclusion
can be drawn regarding small K. Indeed, from Table 1, the cases for K = 2 and 3 have
larger maximum delays for stability than the case for K = 5. This is not uncommon for
other methods of approximation as well. For example, based on the theory presented in
[129], Zhou et al. [130] used a sequence of distributed-delay operators that asymptotically
approach the one obtained by finite spectrum assignment to stabilize marginally stable open-
loop systems. A numerical example indicates that lower order approximations have larger
stability margins.

The case for commensurate delays is rather easy to implement in numerical
simulation. One should use (11.30) and (11.31) instead of (11.1) and (11.14) in order to make
sure all the components of ŷ have the same delay. The simulation conducted in [15, 16] still
slightly exceeds the limit shown in Table 1. Therefore, even if the simulation was done on
(11.30) and (11.31), instability can still be expected, albeit it may take a rather long time to
show up in step response.

11.4. Fundamental Limitation for Rationally Independent Delays

If the delays are subject to independent deviations, then no matter how small the deviations
are, it is always possible to make the delays rationally independent. Therefore, in such a
case, for practical stability, it is essential to consider the possibility of rationally independent
delays. In this case, the stability of the system with discrete implementation is subject to a
more strict fundamental limitation. Let

D(s) =
∫0

−r
eθsG(θ)dθ. (11.49)

Then, we may state the following result.

Theorem 11.3. If

sup
ω=R

ρ[D(iω)] > 1, (11.50)

then the feedback control system consisting of (11.1) and a feedback control using either a rectangular-
like implementation (11.6) or a trapezoidal-like implementation (11.14) with r1, r2, . . . , rK rationally
independent is exponentially unstable for a sufficiently small hmax (defined in (11.9)).

Proof. From (11.50), there is a ω0 such that

ρ[D(iω0)] > 1. (11.51)
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As G is real, we may assume ω0 > 0 without loss of generality. Similar to the proof of
Theorem 11.1,

Dim

(
jω0

)
=

K∑
k=1

Dke
iω0rk (11.52)

can be made arbitrarily close to D(jω0) for a sufficiently small hmax. For such discrete
implementation,

ρ

[
K∑
k=1

Dke
iω0rk

]
> 0. (11.53)

According to the last part of Theorem 6.1, the difference equation is exponentially unstable.
As a result, the whole system is exponentially unstable according to Theorem 5.1.

For the special case of single-input single-output system with distributed delay
determined by finite spectrum assignment, [126] reported that (11.50) may be replaced by
D(0), and if the inequality is reversed, the discrete implementation is exponentially stable for
sufficiently small hmax.

The condition opposite to (11.50) is more strict than the stability of the internal
dynamics of the distributed-delay feedback controller, as shown below.

Proposition 11.4. The roots of (11.18) are all on the strict left half plane; that is, (11.2) is exponen-
tially stable, if

sup
ω=R

ρ[D(iω)] < 1. (11.54)

Proof. We will prove this by contradiction. Suppose

sup{Re(s) | Δd(s) = 0} ≥ 0. (11.55)

Consider the equation

det
(
I − 1

z
D(s)

)
= 0. (11.56)

This defines solutions s as functions of z ∈ R by implicit function theorem. For z = 1, (11.55)
indicates that there exists an s with Re(s) ≥ 0 to satisfy (11.56). Consider this branch of
solution as a continuous function of z, s = f(z). As z → +∞, it is obvious that Re(s) → −∞.
By continuity, there must exists a z1 ≥ 1 such that s1 = f(z1) satisfies Re(s1) = 0. For this s1,
since z1 ≥ 1 is an eigenvalue of D(s1),

sup
ω=R

ρ[D(s1)] ≥ 1. (11.57)

Therefore, (11.54) cannot be true.



36 ISRN Applied Mathematics

11.5. Independent Delays

If each delay is individually implemented, then we can write

rk =
kr

K
+ εk, (11.58)

where εk are small errors. (Strictly speaking, if the system is multi-input multioutput, thenwe
still require different components of yk(t) to have the same delay. If this cannot be enforced,
then further complication may arise. However, the analysis may still be carried out using
similar idea.) In order to formulate the problem to the standard form of (3.7), introduce the
state variables

y1(t) = u(t),

yk(t) = u(t − rk−1), k = 2, 3, . . . , K,

yK+1(t) = yK(t) = u(t − rK−1).

(11.59)

Then the system described by (11.1) and (11.14)may be written as

ẋ(t) = Ax(t) + ByK+1(t − hK+1),

y1(t) = Cx(t) +
K∑
k=1

Dkyk(t − hk),

yk+1(t) = yk(t − hk), k = 1, 2, . . . , K − 1,

yK+1(t) = yK−1(t − hK−1),

(11.60)

where

h1 = r1 =
r

K
+ ε1,

hk = rk − rk−1 = r

K
+ εk − εk−1, k = 2, 3, . . . , K,

hK+1 = r − rk−1 = r

K
− εK−1.

(11.61)

Instead of independent εk, k = 1, 2, . . . , K, we may alternatively consider

δ1 = ε1,

δk = εk − εk−1, k = 2, 3, . . . , K,

δK+1 = −εK−1.

(11.62)
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Table 2

K 2 3 5 10 15 100 1000
rmd 0.6238 0.5256 0.4689 0.4346 0.4244 0.4081 0.4057

With this notation, the system may be written as

ẋ(t) = Ax(t) + B̂

⎛
⎜⎜⎜⎜⎝

ŷ1(t − h1)
ŷ2(t − h2)

...
ŷK+1(t − hK+1)

⎞
⎟⎟⎟⎟⎠,

⎛
⎜⎜⎜⎜⎝

ŷ1(t)

ŷ2(t)
...

ŷK+1(t)

⎞
⎟⎟⎟⎟⎠ = Ĉx(t) + D̂

⎛
⎜⎜⎜⎜⎝

ŷ1(t − h1)
ŷ2(t − h2)

...
ŷK+1(t − hK+1)

⎞
⎟⎟⎟⎟⎠,

(11.63)

where the matrices B̂, Ĉ, and D̂ are defined in (11.33). Again, as the last column block of the D̂
vanishes, no conservatism is introduced by assuming εK+1 as independent, and Corollary 6.3
may be used to evaluate the stability of the difference equation described by D̂ with partition
structure mk = n, k = 1, 2, . . . , K + 1. Actually, as the last column block of D̂ vanishes, the
dynamics of the difference equation is completely determined by the first K equations, and
it is sufficient to apply Corollary 6.3 to the matrix D̃ defined in (11.34) with the partition
structuremk = n, k = 1, 2, . . . , K.

For the overall system, a Lyapunov-Krasovskii functional method based on the
description (11.60) has been formulated in [54]. Its numerical implementation is given in
[58]. The formulation in [58] is directly applicable to this case.

For the system given in Example 11.2, since it is a scalar system, we may use (6.10)
instead, which becomes

K−1∑
k=1

e(k−2)r/K
(
e2r/K − 1

)
+ e(K−2)r/K

(
er/K − 1

)
< 1. (11.64)

The above can be reduced to

2er < 1 + 2er/K. (11.65)

The above condition shows that the exponential stability condition for the difference equation
for all delays given in (11.58) in this example becomes more stringent as K increases. The
maximum r that satisfies (11.65), that we denote as rmd, is listed in Table 2 for various K.

The maximum delay for the overall system to be stable, rma, as estimated by the
Lyapunov-Krasovskii functional method presented in [58] has also been calculated. It was
found that the rma is identical to rmd for K up to 10. This is not surprising; only the spectrum
associated with the difference equation is sensitive to small delay deviations. As shown in
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the commensurate delay case, the other characteristic roots would have allowed much larger
rma.

As K → ∞, er/K → 1, and the condition (11.65) reduces to

r < ln
(
3
2

)
≈ 0.4054. (11.66)

As the characteristic root at −1 is continuous with respect to the delay, we can conclude the
following about the discrete implementation about the system in Example 11.2.

Corollary 11.5. The system described by (11.39), (11.14), and (11.48) is practically stable for
sufficiently large K if (11.66) is satisfied. On the other hand, if r > ln(3/2), then for any given
ε > 0, there exist a sufficiently large K and a set of εk that satisfy |εk| < ε, and the corresponding rk
that satisfy (11.58) such that the system is exponentially unstable.

To evaluate the system using the conditions given by Theorem 11.3, we may calculate

ρ
[
D

(
jω

)]
=

∣∣∣∣∣−2
∫0

−r
e−θeiωθdθ

∣∣∣∣∣

≤ 2
∫0

−r

∣∣∣e−θeiωθ
∣∣∣dθ

= 2
∫0

−r
e−θdθ

= 2(er − 1).

(11.67)

The upper bound above is actually tight as it is equal to ρ[D(jω)]ω=0. Therefore, Theorem 11.3
indicates that, for discrete feedback control with sufficiently small hmax, the complete system
that is practically unstable is

sup
ω∈R

ρ
[
D

(
jω

)]
= 2(er − 1) > 1, (11.68)

or

r > ln
(
3
2

)
. (11.69)

The analysis above indicates that this condition is tight at least for this system.
It is interesting to note that the bound above in this particular scalar example was

identical to the bound obtained by Mirkin [10] based on w-stability.

11.6. An Intermediate Case

We may consider situations somewhere in between the two situations considered above. For
example, if we want to implement the case forK = 5, but we only have devices to implement
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3-channeled simultaneous delays, we may consider using one device to implement the first
three delays, and another to implement the remaining two delays. In this way, the closed-loop
system becomes

ẋ(t) = Ax(t) + B̂

⎛
⎜⎝
ŷ1(t − h1)
ŷ2(t − h2)
ŷ3(t − h3)

⎞
⎟⎠,

⎛
⎜⎝
ŷ1(t)

ŷ2(t)

ŷ3(t)

⎞
⎟⎠ = Ĉx(t) + D̂

⎛
⎜⎝
ŷ1(t − h1)
ŷ2(t − h2)
ŷ3(t − h3)

⎞
⎟⎠,

(11.70)

where ŷ1(t) ∈ R
3n, ŷ2(t) ∈ R

2n, ŷ3(t) = R
n, and hk = r/5 + εk, although ε3 is not independent,

which is not important as it does not affect the difference equation. For the system in
Example 11.2, using Corollary 6.3 yields the maximum delay for practical stability to be at
0.6563. The overall system using the method described in [58] again gives the same stability
limit for the overall system, which is not surprising if we compare with the commensurate
delay case.

12. Marginal Case

Let the characteristic equation of a time-delay system be

Δ(s) = 0. (12.1)

Let

σ = sup{Re(s) | Δ(s) = 0}. (12.2)

Recall from Section 5 that the system is exponentially stable if σ < 0, and it is exponentially
unstable if σ > 0. The situation for

σ = 0 (12.3)

is more complicated. As such cases are encountered in some practical control methods [131–
133], it is of interest to provide an overview of existing results.

A few cases parallel to the systemswithout delay are rather obvious. If there are a finite
number of characteristic roots that are simple and on the imaginary axis, and the remaining
roots satisfy

Re(s) < −ε (12.4)

for some ε > 0, then the system is marginally stable, and any solution with a bounded initial
condition remains bounded. A multiple root on the imaginary axis may cause instability.
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Complication arises when all the characteristic roots s satisfy

Re(s) < 0, (12.5)

but there are a series of characteristic roots sk that asymptotically approach the imaginary
axis

Re(sk) −→ 0. (12.6)

This is possible only if

σ0 = 0, (12.7)

where

σ0 = sup{Re(s) | Δ0(s) = 0}, (12.8)

add Δ0(s) = 0 is the characteristic equation of the associated difference equation. For a single
delay system, it was shown by Hahn [134] that such a system is always asymptotically stable
but not exponentially stable. For example, the following simple example given by Datko [71]

ẋ(t) − ẋ(t − 1) + x(t) = 0 (12.9)

can be shown as asymptotically stable. Its characteristic equation is

g(s) = s
(
1 − e−s) + 1 = 0. (12.10)

However, the following system given in [74]

d2

dt2
[x(t) − 2x(t − 1) + x(t − 2)] + 2

d

dt
[x(t) − x(t − 1)] + x(t) = 0 (12.11)

is unstable. Its characteristic equation is

[
g(s)

]2 = [
s
(
1 − e−s) + 1

]2 = 0, (12.12)

which obviously has identical distribution of characteristic roots as that for the system (12.9)
except that all the roots are double roots instead. The reason is that there is a possibility of an
extra t for the solutions corresponding to each characteristic root of (12.11) as compared to
the solutions for (12.9).

Snow [135] seems to be the first attempt to construct an unstable system that satisfies
(12.5) and (12.6). Although it contributed some major ideas for the other works, it contains
a mistake. A correct construction of such system with some generality is given in Brumley
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[73]. The constructed system has commensurate delays. The main idea is to estimate the rate
of convergence for sk to the imaginary axis, and the order of multiple characteristic roots
needed to drive the system unstable. Gromova [72] also provides a method of constructing
such systems and also commented on the case for incommensurate delays.

13. Conclusions

The stability analysis of time-delay systems of neutral type requires understanding of
some subtle points, especially the discontinuity of the spectrum of the associated difference
equation. Especially, care must be taken when continuity of characteristic roots is used.
A review of some major points are provided that integrates the coupled differential-
difference equation formulation. Some pratical problems are discussed based on the theories.
These include the small delay problem, the sensitivity of Smith predictor, and the discrete
implementation of distributed-delay feedback control. Some derivations are simplified, some
results are strengthened or extended to more general case, and new perspectives are gained.
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[29] L. Ė. Ėl’sgol’ts and S. B. Norkin, Introduction to the Theory and Application of Differential Equations with
Deviating Arguments, Academic Press, New York, NY, USA, 1973, Translated by J. L. Casti.

[30] K. Gu, V. L. Kharitonov, and J. Chen, Stability of Time-Delay Systems, Birkhäuser, Boston, Mass, USA,
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[127] S. Mondié and W. Michiels, “Finite spectrum assignment of unstable time-delay systems with a safe
implementation,” IEEE Transactions on Automatic Control, vol. 48, no. 12, pp. 2207–2212, 2003.

[128] Q. C. Zhong, “On distributed delay in linear control laws. II. Rational implementations inspired
from the δ-operator,” IEEE Transactions on Automatic Control, vol. 50, no. 5, pp. 729–734, 2005.

[129] Z. Lin and H. Fang, “On asymptotic stabilizability of linear systems with delayed input,” IEEE
Transactions on Automatic Control, vol. 52, no. 6, pp. 998–1013, 2007.

[130] B. Zhou, Z. Y. Li, and Z. Lin, “On high-order truncated predictor-feedback for linear systems with
input delay,” in Proceedings of the 31st Chinese Control Conference, pp. 836–841, Hefei, China, 2012.

[131] K. Youcef-Toumi and J. Bobbett, “Stability of uncertain linear systems with time delay,” Journal of
Dynamic Systems, Measurement and Control, vol. 113, no. 4, pp. 558–567, 1991.

[132] K. Youcef-Toumi and S. Reddy, “Analysis of linear time invariant systems with time delay,” Journal
of Dynamic Systems, Measurement and Control, vol. 114, no. 4, pp. 544–555, 1992.

[133] K. Youcef-Toumi and S. T. Wu, “Input/output linearization using time delay control,” Journal of
Dynamic Systems, Measurement and Control, vol. 114, no. 1, pp. 10–19, 1992.
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