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Delay-Independent Stability Analysis of Linear Time-Delay Systems Based on Frequency
DiscretizationI

Xianwei Lia, Huijun Gaoa,∗, Keqin Gub

aResearch Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, China.
bDepartment of Mechanical and Industrial Engineering, Southern Illinois University Edwardsville, Edwardsville, IL 62026-1805, USA.

Abstract

This paper studies strong delay-independent stability of linear time-invariant systems. It is known that delay-independent stability
of time-delay systems is equivalent to some frequency-dependent linear matrix inequalities. To reduce or eliminate conservatism
of stability criteria, the frequency domain is discretized into several sub-intervals, and piecewise constant Lyapunov matrices are
employed to analyze the frequency-dependent stability condition. Applying the generalized Kalman–Yakubovich–Popov lemma,
new necessary and sufficient criteria are then obtained for strong delay-independent stability of systems with a single delay. The
effectiveness of the proposed method is illustrated by a numerical example.

Keywords: Time-delay systems, frequency discretization, delay-independent stability, Lyapunov inequality.

1. Introduction

In many practical systems such as industrial processes and
networked control systems, time-delay phenomena are in-
evitably encountered, and are often the key factor that affects
the performance (Gu et al., 2003; Wang et al., 2015). Time-delay
systems, although with a long history, are one of the most ac-
tive topics in control and system theory in the past two decades,
see Gu and Niculescu (2003); Sipahi et al. (2011) and the ref-
erences therein. Even the most basic problem, stability analy-
sis, of time-delay systems is still challenging due to its infinite-
dimensional nature (Gu et al., 2003), and such study is still
evolving (Sipahi et al., 2011). Sometimes, stability of systems
can be maintained for all positive delays, thus giving the no-
tion of delay-independent stability. This is in contrast to delay-
dependent stability, in which case the system is stable for only
certain range of delay values. In this paper, we focus on delay-
independent stability.

The term “delay-independent stability” was introduced in
Hale (1977), and many criteria have been developed for testing
delay-independent stability of time-delay systems since then
(see Delice and Sipahi (2012); Souza et al. (2009) for exam-
ples of more recent developments). Delay-independent sta-
bility itself includes two different notions, viz., strong delay-
independent stability and weak delay-independent stability
(see Definitions 1 and 2 in Section 2.1, respectively). The strong
delay-independent stability, albeit being as a special case of
the weak delay-independent one, is sufficiently general from
a practical robustness point of view (Bliman, 2002). Neces-
sary and sufficient criteria of delay-independent stability (both
strong and weak) are often developed using a frequency do-
main method based on the characteristic equation. Some typi-
cal tools used include polynomial theory (Kamen, 1982), matrix
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pencil (Niculescu, 1998b), and robust control theory (Chen and
Latchman, 1995). In addition to direct stability test, the neces-
sary and sufficient conditions may also be useful in developing
other simpler sufficient conditions that are easier to test, and
uncovering their inherent conservatism.

A number of sufficient conditions for delay-independent sta-
bility can also be found in the literature (Boyd et al., 1994; Chen
et al., 1995; Kolmanovskii et al., 1999). Although efforts in sta-
bility analysis are made mainly to derive necessary and suffi-
cient conditions, the interest in some sufficient conditions are
due to two factors. First, some sufficient conditions usually re-
quire much less computation than typical necessary and suffi-
cient ones. Second, many sufficient conditions, especially those
based on the Lyapunov stability theory (Boyd et al., 1994; Kol-
manovskii et al., 1999), are easily adapted to other more compli-
cated problems of time-delay systems. In fact, fruitful synthe-
sis results on time-delay systems, whether delay-independent
(Boyd et al., 1994; Shi et al., 1999; Wang et al., 1999; Wu and
Grigoriadis, 2001) or delay-dependent (Du et al., 2010; Palhares
et al., 2005; Fridman and Shaked, 2002; He et al., 2004; Lin et al.,
2006; Li and Gao, 2011; Gao and Li, 2011), can be regarded as ap-
plications or extensions of simple linear matrix inequality (LMI)
conditions (Boyd et al., 1994; Agathoklis and Foda, 1989).

In the paper, we will revisit the problem of strong delay-
independent stability analysis of linear time-invariant systems
with a state delay. Our attention will be focused on applying
a frequency-discretization idea to develop new stability criteria
in terms of linear matrix inequality (LMI). The advantage of the
proposed stability criteria lies in the fact that they give a series
of new sufficient conditions for systems with a single delay and
become nonconservative as the frequency-discretization num-
ber goes to infinity, thus potentially less conservative than some
typical sufficient LMI conditions in the literature. Numerical re-
sults will be provided to illustrate the improvement of the pro-
posed method.

Notation: The superscripts “−1”, “T”, “∗”and “⊥” stand for
inverse, transpose, conjugate transpose and null space of a ma-
trix, respectively. Rm×n (Cm×n) is the set of m×n real (complex)
matrices. C+ denotes the closed right half plane of the complex
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plane, and D and ∂D denote the closed unit disc and the unit
circle on the complex plane, respectively. The notation P > 0
(≥ 0) means that matrix P is Hermitian positive definite (semi-
definite). Sn and Hn are the sets of n ×n symmetric and Her-
mitian matrices, respectively. I denotes an identity matrix with
appropriate dimension. For a square matrix A, sym{A} repre-
sents (A∗+ A)/2. For a square matrix A, α(A) and ρ(A) are the
spectral abscissa and spectral radius of A, respectively,λ(A) and
σ(A) are the eigenvalues and singular values of A, respectively.
Matrix dimensions are assumed to be compatible for algebraic
operations.

2. Main Results

In this section, we present new stability conditions for sys-
tems with a single delay. Section 2.1 formulates the prob-
lem and provides some preliminaries. Section 2.2 comments
some existing results for motivation. Technical details of the
frequency-discretization idea and stability conditions are pre-
sented in Section 2.3, and numerical implementation of the sta-
bility conditions is discussed in Section 2.4.

2.1. Problem statement and preliminaries

Consider a linear continuous time-invariant system with a
single delay described by the following delay-differential equa-
tion:

ẋ(t ) = A0x(t )+ A1x(t −d), (1)

where x(t ) ∈Rn is the state vector, A0 and A1 ∈Rn×n are known
constant matrices, and d ≥ 0 is the delay. Define a bivariate
polynomial c(s, z) as

c(s, z), det(sI− A0 − z A1).

For a given delay d , it is known (Hale, 1977) that the asymptotic
stability of system (1) is equivalent to

c(s, z), 0, ∀s ∈C+ and z = e−d s . (2)

In this paper, we are interested in system (1) whose stability is
maintained for arbitrary delay d ≥ 0. Two related notions of
delay-independent stability for system (1) are defined as follows.

Definition 1. System (1) is said to be (weakly) delay-
independently stable if the condition in (2) is satisfied for
all d ≥ 0.

Definition 2. System (1) is said to be strongly delay-
independently stable if

c(s, z), 0, ∀(s, z) ∈C+×D. (3)

According to the definition, strong delay-independent stabil-
ity is defined by regarding s and z as independent of each other.
As emphasized in Chen and Latchman (1995), strong delay-
independent stability is stricter than the weak version in terms
of the requirement at s = 0, where z = 1 in c(s, z) can no longer
be regarded as a variable independent of s any more. However,
the property of weakly delay-independent stability is not robust
against perturbations of parameters A0 and A1 (Bliman, 2002).
In this paper, we mainly consider strong delay-independent sta-
bility (but see Remark 3).

It is difficult to test strong delay-independent stability of sys-
tem (1) directly according to its definition, because c(s, z) is a
bivariate polynomial. Define

S(s), (sI− A0)−1 A1, Z (z), A0 + z A1.

The condition in (3) can be simplified to overcome this diffi-
culty.

Lemma 1. System (1) is strongly delay-independently stable if
and only if either one of the following two equivalent conditions
holds.

(i)
ρ(S(s)) < 1, ∀ℜ(s) = 0 (4)

and
α(A0) < 0. (5)

(ii) α(Z (z)) < 0 for all z ∈ ∂D.

Condition (i) has been established in Chen and Latchman
(1995), and Agathoklis and Foda (1989); and condition (ii) can
be found in Kamen (1982), and Agathoklis and Foda (1989). In
this paper, they will be used to develop novel and tractable sta-
bility criteria for system (1).

2.2. Observation and Motivation

It has been well understood (Boyd et al., 1994; Agathoklis and
Foda, 1989) that condition (i) of Lemma 1 holds if the following
LMI holds for some P0 > 0 and P1 > 0:[

AT
0 P0 +P0 A0 +P1 P0 A1

AT
1 P0 −P1

]
< 0, (6)

which is known as two-dimensional (2-D) Lyapunov inequal-
ity (Agathoklis and Foda, 1989). This condition can be inter-
preted from two different points of view. First, according to
the continuous-time bounded real lemma (Anderson and Vong-
panitlerd, 1973), LMI (6) holds if and only if

max
ℜ(s)=0

σmax(R1S(s)R−1
1 ) < 1; RT

1 R1 = P1. (7)

In view of the relationships:

max
ℜ(s)=0

ρ(S(s)) = max
ℜ(s)=0

ρ
(
R1S(s)R−1

1

)≤ max
ℜ(s)=0

σmax(R1S(s)R−1
1 ),

(8)
it can be seen that (7), or equivalently (6), is more strict than
condition (i) in Lemma 1. This frequency-domain interpreta-
tion can be found, e.g., in Boyd et al. (1994); Chen et al. (1995);
Agathoklis and Foda (1989). Second, (6) can also be established
from a time-domain point of view by using a simple LKF (Boyd
et al., 1994). Both interpretations endow the condition in (6)
with great power and extensibility in other more complicated
problems of time-delay systems, especially, for system synthe-
sis. This is an advantage of sufficient conditions similar to the
2-D Lyapunov inequality (6).

With respect to necessary and sufficient stability test, the in-
equality (8) becomes an equality if R1 is allowed to depend on
the frequency

max
ℜ(s)=0

ρ(S(s)) = max
ℜ(s)=0

min
R1(s)

invertible

σmax(R1(s)S(s)R−1
1 (s)). (9a)

2



As a consequence, maxℜ(s)=0ρ(S(s)) < 1 is equivalent to

∃P1(s) > 0, such that S∗(s)P1(s)S(s)−P1(s) < 0, ∀ℜ(s) = 0. (9b)

Therefore the conservatism of condition (6) is caused by fix-
ing R1(s) = R1 or P1(s) = P1 on the imaginary axis ℜ(s) = 0. In
view of the discrete Lyapunov inequality STP1S −P1 < 0, (9b) is
called as frequency-dependent 1-D Lyapunov inequality (Agath-
oklis and Foda, 1989). Bliman (Bliman, 2002) has proposed an
elegant LMI approach to construct a family of matrix functions
P1(s) such that (9b) is satisfied.

In this paper, we will present a new method of construct-
ing P1(s) to satisfy (9b), so as to obtain some new delay-
independent stability conditions.

2.3. Stability conditions based on frequency-discretization

In this section, two stability conditions, based on conditions
(i) and (ii) of Lemma 1, respectively, will be presented.

2.3.1. The first stability condition
As commented above, the LMI condition (6) is conservative

due to the fact that R1(s) in (9a) and P1(s) in (9b) are constrained
to be constant matrices. In this paper, to reduce or eliminate
this conservatism, R1(s) and P1(s) are chosen as piecewise con-
stant functions of ω. Because A0 and A1 are real matrices, we
have supω∈Rρ(S(jω)) = maxω≥0ρ(S(jω)) , thus it is sufficient to
only consider nonnegative frequencies. The set of nonnegative
frequencies may be partitioned as follows,

Ω+ , [0,∞) =⋃κ
l=1Ωl , (10)

where

Ωl = [ωl−1,ωl ], l = 1, . . . ,κ−1,Ωκ = [ωκ−1,∞) (11)

and 0 = ω0 < ω1 < ·· · < ωκ−1 < +∞. Scalars κ and ωl , l =
1,2, . . . ,κ− 1 are to be determined later. Specifically, we con-
strain P1(s) and R1(s) in the following form:

P1(jω) = P (l )
1 , R1(jω) = R(l )

1 , ω ∈Ωl , l = 1,2, . . . ,κ, (12)

where P (l )
1 ’s are Hermitian positive definite matrices, and R(l )

1 ’s

are nonsingular matrices that satisfy R(l )T
1 R(l )

1 = P (l )
1 .

In each interval Ωl , one needs to test the existence of a con-
stant nonsingular matrix R(l )

1 to satisfy

max
ω∈Ωl

σmax(R(l )
1 S(jω)R(l )−1

1 ) < 1, (13)

or equivalently, a constant positive definite matrix P (l )
1 to satisfy

S∗(jω)P (l )
1 S(jω)−P (l )

1 < 0, ∀ω ∈Ωl . (14)

First, we have the following theorem showing the existence
of piecewise constant functions P1(s) and R1(s) if system (1) is
strongly delay-independently stable.

Theorem 1. System (1) is strongly delay-independently stable if
and only if α(A0) < 0 and there exist a positive integer κ, fre-
quency intervalsΩl , l = 1,2, . . . ,κ satisfying (10) and nonsingular
matrices P (l )

1 ∈ Hn , P (l )
1 > 0, l = 1,2, . . . ,κ to satisfy (14); or equiv-

alently, α(A0) < 0 and there exist R(l )
1 ∈ Cn×n nonsingular such

that (13) is satisfied for all l = 1,2, . . . ,κ.

Proof. The sufficiency is obvious from the above discussion.
To prove the necessity, suppose that system (1) is strongly

delay-independently stable. Then according to Lemma 1, we
have ρ(S(jω̄)) < 1, where ω̄ ∈ [0,∞) is arbitrarily chosen and
fixed. For this frequency ω̄,

∃R̄1 invertible, such that σmax(R̄1S(jω̄)R̄−1
1 ) < 1.

Moreover, in view of α(A0) < 0, we have

lim
ω̄→∞

σmax(R̄1S(jω̄)R̄−1
1 ) = 0.

In view of the continuity of σmax(R̄1S(jω̄)R̄−1
1 ) with respect to ω̄,

the above equation implies that there exists a sufficiently large
frequency ω̄∗ > 0 to satisfy

σmax(R̄1S(jω̄)R̄−1
1 ) < 1, ∀ω̄≥ ω̄∗. (15)

Set ωκ−1 = ω̄∗ and R(κ)
1 = R̄1, then we have

max
ω∈Ωκ

σmax(R(κ)
1 S(jω)R(κ)−1

1 ) < 1. (16)

It remains to be shown that (13) is satisfied for all ω ∈ [0,ω̄∗]. To
this end, since system (1) is strongly delay-independently sta-
ble, an invertible matrix function R̃1(ω̃) exists such that

σmax(R̃1(ω̃)S(jω̃)R̃−1
1 (ω̃)) < 1, ∀ω̃ ∈ [0,ω̄∗] (17)

or equivalently ∃P̃1(ω̃) > 0 such that

S∗(jω̃)P̃1(ω̃)S(jω̃)− P̃1(ω̃) < 0, ∀ω̃ ∈ [0,ω̄∗] (18)

According to Bliman (2004), (18) must admit a polynomial so-
lution of P̃1(ω̃) in ω̃, which implies that R̃1(ω̃) and R̃−1

1 (ω̃) in
(17), when chosen as R̃1(ω̃) = P̃ 1/2

1 (ω̃), both are continuous on
ω̃ ∈ [0,ω̄∗]. Define a bivariate function

f (ω̃,ω),σmax(R̃1(ω̃)S(jω)R̃−1
1 (ω̃))

on [0,ω̄∗]2. Note that f (ω̃,ω) is also continuous with respect to
ω̃ andω, and (17) implies that f (ω̃,ω̃) < 1 for all ω̃ ∈ [0,ω̄∗]. Due
to the continuity of f (ω̃,ω) on a compact set [0,ω̄∗]2 and ac-
cording to Theorem 4.19 of Rudin (1976), f (ω̃,ω) is uniformly
continuous on [0,ω̄∗]2. Therefore, there exists a sufficiently
small constant ε> 0 such that

f (ω̃,ω̃+∆ω̃) < 1, ∀(ω̃,∆ω̃) ∈ [0,ω̄∗]× [−ε,ε]. (19)

Now choose an integer κ such that m∗ , ω̄∗/(κ− 1) ≤ 2ε, and
divide [0,ω̄∗] equally into κ−1 sub-intervals. Correspondingly,
Ωl , l = 1, . . . ,κ−1 in (11) areΩl = [(l −1)m∗, l m∗]. From (19), we
have that, for all l = 1, . . . ,κ−1,

1 > max
ω̃∈[0,ω̄∗]

max
ω∈[ω̃−ε,ω̃+ε]

f (ω̃,ω) ≥ max
ω̃∈Ωl

max
ω∈[ω̃−ε,ω̃+ε]

f (ω̃,ω).

Let ω̃ = (l − 1/2)m∗ and choose R(l )
1 = R̃1((l − 1/2)m∗), l =

1, . . . ,κ−1, then we have

Ωl ⊆ [(l −1/2)m∗−ε, (l −1/2)m∗+ε].

Furthermore,

1 > max
ω̃∈Ωl

max
ω∈[ω̃−ε,ω̃+ε]

f (ω̃,ω)

≥ max
ω∈[(l−1/2)m∗−ε,(l−1/2)m∗+ε]

σmax(R(l )
1 S(jω)R(l )−1

1 )
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≥ max
ω∈Ωl

σmax(R(l )
1 S(jω)R(l )−1

1 ), l = 1, . . . ,κ−1

which together with (16) implies the existence of R(l )
1 , l =

1,2, . . . ,κ that satisfy (13). Let P (l )
1 = R(l )T

1 R(l )
1 , l = 1,2, . . . ,κ, then

(14) is also satisfied, and the proof is complete.
For each l , the conditions in (14) are the scaled bounded re-

alness property of a continuous-time system S(s) over a finite
or semi-infinite frequency rangeΩl . To make them numerically
more tractable, we apply the GKYP lemma (Iwasaki and Hara,
2005) and propose the first necessary and sufficient LMI condi-
tion for the strong delay-independent stability of system (1).

Theorem 2. System (1) is strongly delay-independently stable if
and only if there exist a positive integer κ, frequency intervalsΩl

in (11), l = 1, . . . ,κ and nonsingular matrices P ∈ Sn , P (l )
0 , P (l )

1 ,

Q(l )
0 ∈ Hn , l = 1, . . . ,κ such that P > 0, P (l )

1 > 0, Q(l )
0 > 0, l = 1, . . . ,κ

and

AT
0 P +PA0 < 0 (20)

AT
(
Φ0 ⊗P (l )

0 +Ψ(l )
0 ⊗Q(l )

0

)
A+Φ1 ⊗P (l )

1 < 0, l = 1, . . . ,κ (21)

where

A ,
[

A0 A1

I 0

]
,Φ0 ,

[
0 1
1 0

]
, Φ1 ,

[
1 0
0 −1

]

Ψ(κ)
0 ,

[
1 0
0 −ω2

κ−1

]
, Ψ(l )

0 ,

[
−1 jω(l )

c

−jω(l )
c −ωl−1ωl

]
ω(l )

c , (ωl−1 +ωl )/2, l = 1, . . . ,κ−1. (22)

Proof. According to the GKYP lemma (Theorem 4 of Iwasaki
and Hara (2005)), (21) is equivalent to[

S(jω)
I

]∗ (
Φ1 ⊗P (l )

1

)[
S(jω)

I

]
< 0, ∀ω ∈Ωl , l = 1, . . . ,κ

which is (14). Note that (20) is equivalent to (5). According to
Theorem 1, it follows that the strong delay-independent stabil-
ity of system (1) is equivalent to the existence of P , P (l )

0 , P (l )
1 ,

Q(l )
0 , l = 1, . . . ,κ such that P > 0, P (l )

1 > 0, Q(l )
0 > 0, l = 1, . . . ,κ and

(20), (21) are satisfied. The proof is thus complete.

2.3.2. The second stability condition
Theorem 2 is derived from condition (i) of Lemma 1. Starting

from condition (ii) of Lemma 1, another stability condition can
be obtained using the frequency-discretization technique.

From a frequency-domain point of view, condition (6) may be
interpreted in the scaled positive realness sense of a discrete-
time system (Agathoklis and Foda, 1989). In fact, from con-
dition (ii) of Lemma 1 and the KYP lemma (Iwasaki and Hara,
2005), it follows that

max
z∈∂D

α(Z (z)) < 0 ⇔


∃R0(z) invertible, such that
max
z∈∂D

λmax(sym(R0(z)Z (z)R−1
0 (z))) < 0

(or ∃P0(z) > 0, such that
Z∗(z)P0(z)+P0(z)Z (z) < 0, ∀z ∈ ∂D)

(23)

⇐


∃R0 invertible, such that
max
z∈∂D

λmax(sym(R0Z (z)R−1
0 )) < 0

(or ∃P0 > 0, such that
Z∗(z)P0 +P0Z (z) < 0, ∀z ∈ ∂D)

⇔ Condition (6).

Hence, the conservatism of condition (6) is caused by con-
straining R0(z) and P0(z) to be constant on z = ejθ, θ ∈ [−π,π].
Following the same spirit as the stability condition given in The-
orem 1, we use piecewise constant functions R0(ejθ) and P0(ejθ)
of θ to analyze condition (ii) in Lemma 1. Note that Z (z) is a
special discrete-time transfer function with A0 and A1 real ma-
trices. Hence, it suffices to restrict the frequency to [0,π]. Parti-
tion [0,π] to η intervals

W , [0,π] =⋃η

l=1 Wl , (24)

where Wl = [θl−1,θl ], l = 1,2, . . . ,η, and 0 = θ0 < θ1 < ·· · < θη =
π. Constrain P0(z) and R0(z) to be piecewise constant

P0(ejθ) = P (l )
0 , R0(ejθ) = R(l )

0 , θ ∈Wl

where P (l )
0 ’s are positive definite matrices, and R(l )

0 ’s are nonsin-

gular matrices satisfying R(l )T
0 R(l )

0 = P (l )
0 . The remaining work

is to find P (l )
0 or R(l )

0 to test the following conditions for all
l = 1,2, . . . ,η,

max
θ∈Wl

λmax(sym(R(l )
0 Z (ejθ)R(l )−1

0 )) < 0 (25)

or equivalently,

Z∗(ejθ)P (l )
0 +P (l )

0 Z (ejθ) < 0, ∀θ ∈Wl . (26)

The following two theorems show the existence of R(l )
0 and

P (l )
0 satisfying (25) and (26) and how to find them by the LMI

technique. Their proofs are similar to that of Theorems 1 and 2,
respectively, and are thus omitted.

Theorem 3. System (1) is strongly delay-independently stable if
and only if there exist a positive integer η, frequency intervals Wl ,
l = 1,2, . . . ,η satisfying (24) and nonsingular matrices P (l )

0 ∈ Hn ,

P (l )
0 > 0, l = 1,2, . . . ,η to satisfy (26); or equivalently, there exist

nonsingular matrices R(l )
0 ∈ Cn×n such that (25) holds for all l =

1,2, . . . ,η.

Theorem 4. System (1) is strongly delay-independently stable if
and only if there exist a positive integer η, frequency intervals Wl

in (24), l = 1,2, . . . ,η and nonsingular matrices P (l )
0 , P (l )

1 , Q(l )
1 ∈

Hn , l = 1,2, . . . ,η such that P (l )
0 > 0, Q(l )

1 > 0, l = 1,2, . . . ,η and

AT
(
Φ0 ⊗P (l )

0

)
A+Φ1 ⊗P (l )

1 +Ψ(l )
1 ⊗Q(l )

1 < 0, l = 1,2, . . . ,η (27)

where A,Φ0 andΦ1 are defined in (22), and

Ψ(l )
1 ,

[
−2cosθ(l )

r e−jθ(l )
c

ejθ(l )
c 0

]
θ(l )

c , (θl−1 +θl )/2, θ(l )
r , (θl −θl−1)/2, l = 1,2, . . . ,η. (28)

Remark 1. The conditions in (20), (21) and (27) are LMIs and
can be effectively tested via the existing numerical algorithms.
If (21) is solvable for an integer κ, it is also solvable for κ+1 as
long as the frequency sub-intervals Ωl ’s are appropriately cho-
sen as will be discussed in Subsection 2.4. Hence, there always
is a way to reduce the conservatism of Theorem 2 by increas-
ing κ. A similar observation can also be made to Theorem 4.
Indeed, it has been shown that Theorems 2 and 4 can give ex-
act stability testing, as long as the frequency intervals are suffi-
ciently small.
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2.4. Test procedures based on frequency-discretization

In Theorems 2 and 4, the values of κ and η, and the specific
discretization Ωl and Wl are unknown a priori. As commented
in Remark 1, increasing κ, or making a frequency interval nar-
rower, can reduce the conservatism. Hence, a natural idea is to
gradually reduce the width of the frequency ranges for the LMIs
until all the LMIs are satisfied and the frequency sets cover the
entire frequency range. Following this idea, we provide a dis-
cretization strategy for finding κ and Ωl ’s, or η and Wl ’s such
that system (1) is determined to be stable or unstable based on
Theorems 2 and 4. For convenience, first define two auxiliary
LMI conditions as follows:

P1 > 0, Q0 > 0 and AT(Φ0 ⊗P0 +Ψ0 ⊗Q0)A+Φ1 ⊗P1 < 0 (29)

P0 > 0, Q1 > 0 and AT(Φ0 ⊗P0)A+Φ1 ⊗P1 +Ψ1 ⊗Q1 < 0 (30)

where A,Φ0 andΦ1 are defined in (22), and

Ψ0 =
[ −1 jωc

−jωc −ωω̄
]

, Ψ1 =
[ −2cosθr e−jθc

ejθc 0

]

andωc = (ω̄+ω)/2, θc = (θ̄+θ)/2, θr = (θ̄−θ)/2 with ω̄,ω, θ̄ and
θ being known constant scalars. The LMIs in (29) and (30) are
one of those in (21) and (27) over specific intervals [ω,ω̄] and
[θ, θ̄], respectively. The test procedure is stated at follows.

Step 1 Choose an arbitrary nonsingular R̄1. Determine a suffi-
ciently large ω̄∗, such that (15) is satisfied. Implement Step
2 for the interval [0,ω̄∗].

Step 2 An interval is given when this step is implemented. Denote
this interval as [ω,ω̄]. Check the feasibility of the LMI (29),
i.e., the existence of P0, P1 and Q0 to satisfy (29) over [ω,ω̄].

a) If feasible, then ρ(S(jω)) < 1 for the given interval.
Exit Step 2 with the given interval. If not, continue
with the following.

b) Set ωc = (ω+ ω̄)/2. Check whether ρ(S(jωc)) ≥ 1.
If it is true, then declare the system not strongly
delay-independently stable, and terminate the
entire procedure.

c) If ω̄−ω< ε, then make a note that the condition
cannot be determined in this interval, and exit
Step 2 with the given interval.

d) Implement Step 2 for the interval [ω,ωc].
e) Implement Step 2 for the interval [ωc,ω̄].

Step 3 If in any one of the implementations of Step 2-c), the con-
dition cannot be determined, then declare the condition
cannot be determined with the given accuracy level. Oth-
erwise, declare the system is delay-independent stable.

These test procedures are explained as follows.

• In Step 2, once we fail to directly check the condition
ρ(S(jω)) < 1 over the frequency range [ω,ω̄] using the LMI
condition in (29), we divide the frequency range into two
sub-intervals [ω,ωc] and [ωc,ω̄] to see if (29) is satisfied
for each sub-interval. For practical programming, we con-
veniently implement this checking process in a recursive
manner.

• The role of Step 1 is to reduce the frequency range to be
checked to a finite one. To find the frequency ω̄∗ such that
ρ(S(jω)) < 1 holds for all ω ∈ (ω̄∗,∞), an upper bound of
ρ(S(jω)) can be estimated as

ρ(S(jω)) ≤σmax((jωI−A0)−1 A1) ≤ (|ω|−σmax(A0))−1σmax(A1)

where it is assumed that |ω| > σmax(A0). Hence, it suffices
to choose

ω̄∗ =σmax(A0)+σmax(A1) (31)

to guarantee ρ(S(jω)) < 1 for all ω ∈ (ω̄∗,∞). Correspond-
ing to (21) and Step 1, we may choose P (κ)

1 = R̄1 = I.

• The checking process is stated specifically for Theorem 2.
It is not difficult to adapt it to Theorem 4, for which ω,
[0,ω̄∗] and (29) are replaced by θ, [0,π] and (30), respec-
tively, and α

(
Z (ejθ)

) ≥ 0 is used instead of ρ(S(jωc)) ≥ 1 in
Step 2-b).

Remark 2. When ω = 0, the explicit positive definiteness con-
straint P1 > 0 can be removed in (29), because it has been im-
plied by the last LMI in (29) (one can check the right lower n×n
block of the last LMI in (29)). This happens when testing the
first frequency interval through Theorem 2, and could be made
use of to reduce the LMI size to be tested for Theorem 2.

Remark 3. We can also address systems that is weakly but not
strongly delay-independently stable. For such systems, condi-
tion ρ(S(jω)) < 1 holds only for ω > 0 (Chen and Latchman,

1995). If ρ(S(jω)) = 1 for ω = 0, and dρ(S(jω))
dω < 0 for all ω ∈

[0,ωε], where ωε is a sufficient small positive scalar, then the
frequency-discritization method may be used to check the con-
dition ρ(S(jω)) < 1 over the frequency range [ωε,∞).

Remark 4. The GKYP lemma can be used to deal with systems
with kinds of finite frequency specifications, e.g., mitigate har-
monics (Napoles et al., 2013). It is worth pointing out that
by combining the control synthesis results based on the GKYP
lemma (see Iwasaki and Hara (2007); Li and Gao (2014)) with
the stability conditions presented above, new stabilization con-
ditions for time-delay systems can also be derived. Note that
there have been a lot of control synthesis results in the form of
LMIs for time-delay systems since the seminal work Boyd et al.
(1994). However, on one hand, most of the existing results focus
on reducing conservatism in the delay-dependent aspect (see,
e.g., Fridman and Shaked (2002); Wu et al. (2004); Palhares et al.
(2005)), which, when dealing with the delay-independent as-
pect, actually can be reduced to the classic condition in (Boyd
et al., 1994, Section 10.4). On the other hand, to the best of au-
thors’ survey and knowledge, many existing delay-independent
LMI stabilization results (see, for example, de Oliveira and
Geromel (2004); Ivaynescu et al. (2000); Niculescu (1998a)) are
still based on a more conservative stability condition. Due to
the utilization of the frequency-discretization idea, the delay-
independent stabilization results based on the proposed stabil-
ity conditions shall be less conservative than the one in (Boyd
et al., 1994, Section 10.4). It should be noted that, different from
the proposed stability conditions, any reasonably simple result-
ing stabilization ones are generally sufficient but not necessary.

3. A Numerical Example

This section provides a numerical example to illustrate the
effectiveness of the proposed method. The LMI problems en-
countered in the proposed method will be solved by the free
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solver SDPT3 (Toh et al., 1999) via the parser YALMIP (Löfberg,
2004).

Example 1. Consider Example 3.3 of Gu et al. (2003) which is
given by

ẋ(t ) = A0x(t )+βA1x(t −d) (32)

where β is a real constant used for analysis, and

A0 =


0 1 0 0
0 0 1 0
0 0 0 1
−2 −3 −5 −2

 , A1 =


−0.05 0.005 0.25 0
0.005 0.005 0 0

0 0 0 0
−1 0 −0.5 0

 .

(33)
It is known that the maximum of β to maintain delay-
independent stability is β̄

∗ = 1.21955.
By applying the proposed method and some representative

existing LMI based methods to test the stability of this exam-
ple, we show in Table 1 the results on the achieved maximum of
β (denoted by β̄), and the number of variables (NoV) and rows
(NoR) of the LMI conditions for each method, where “SoS” de-
notes “sum-of-squares”, “SA” means “state augmentation” and
“FD” is “frequency discretization”. It is seen that the proposed
method in the paper (as well as those in Bliman (2002) and He
et al. (2005)) can verify the delay-independent stability of this
example for β̄= β̄∗

, showing the improvement of the proposed
method compared with the simple LMI condition in (6). Re-
garding the computational burden of those methods that con-
firm the exact margin β̄= β̄∗

for this example, Theorem 2 needs
fewer variables, while Bliman (2002) is the most efficient one
that has a condition of the smallest size and spends the least
time among these methods.

Remark 5. In Zhang et al. (2003), a simple LMI condition was
proposed for robust stability analysis of an uncertain matrix
that in form is the same as condition (ii) of Lemma 1 but with z
in Z (z) being a bounded real. Following the method in Zhang
et al. (2003), a series of similar LMI conditions may also be
established for robust analysis with a modulus-bounded com-
plex parameter z as in condition (ii) of Lemma 1. To this end,
the scaling matrix G2 in (37) in the reference should be set to
zero. Interestingly, it is found that this modification along with
PΣ > 0 finally renders (37) in Zhang et al. (2003) coincide with
the LMI condition in Bliman (2002). On the other hand, it is
worth pointing out that Zhang et al. (2003) also provides an
upper bound of the size of the condition, beyond which, the
studied uncertain system is unstable if the condition is infea-
sible. This property is attractive because it is useful for instabil-
ity test. Conditions with a similar property can also be found
in Ebihara et al. (2006); Chesi (2013), which deal with Schur
stability with a modulus-bounded uncertain complex param-
eter and (Schur or Hurwitz) stability with a bounded uncertain
real parameter of the polynomial form, respectively. However,
the stability conditions presented in this paper do not have this
property, because there is no a priori knowledge on what the
discretized frequency intervals should be, which is a drawback
of the proposed method. For the considered problem, how to
derive stability conditions of the same nature is an interest-
ing topic, and the ideas presented in the mentioned references
would be promising for this topic.

Remark 6. Although Theorem 2 and Theorem 4 both can ex-
actly test delay-independent stability, there is no result that re-
lates the (P , Q) matrices in the conditions (21) to the others in

(27). This is because the (P , Q) matrices in the two sets of LMI
conditions result from the discretization of different frequency
variables. For this example with β̄

∗ = 1.21955, we tried substi-
tuting the values of P matrices obtained by Theorem 2 into the
conditions of Theorem 4, but cannot find any solution to ver-
ify the stability of this example, although it is indeed stable. In
addition, it should be pointed out that (20) is not explicitly in-
cluded in Theorem 4 because it has been guaranteed by the sat-
isfactoriness of (27) and (28).

Remark 7. As mentioned, the results in Table 1 show that The-
orem 2 is more efficient than Theorem 4, but this depends on
the specific example studied. For instance, if the same example
for β= 1.21955 is investigated but with the third row of A1 mod-
ified to

[
0.7 −0.2 0.5 −0.18

]
, it is found that Theorem 2

with κ = 4 can ascertain the delay-independent stability, while
Theorem 4 with η= 2 suffices to do this.

4. Conclusion

Strong delay-independent stability of linear time-invariant
systems with state delay has been revisited in the paper, and a
frequency-discretizing idea has been utilized to derive a series
of new stability criteria. The proposed stability criteria are pre-
sented in terms of LMI, and can be easily tested by the existing
numerical software. It is shown that the proposed stability crite-
ria are necessary and sufficient for delay-independent stability
with a single delay, as long as the discretization number goes to
infinity. Numerical results have clearly demonstrated that the
proposed method improves some classic simple LMI ones.
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