
Southern Illinois University Edwardsville Southern Illinois University Edwardsville 

SPARK SPARK 

SIUE Faculty Research, Scholarship, and Creative Activity 

7-12-2013 

The impact of nitrogen contamination and river modification on a The impact of nitrogen contamination and river modification on a 

Mississippi River floodplain lake Mississippi River floodplain lake 

Indu Karthic 
Southern Illinois University Edwardsville, indu_karthic@yahoo.com 

Richard B. Brugam Ph.D. 
Southern Illinois University Edwardsville, rbrugam@siue.edu 

William A. Retzlaff 
Southern Illinois University Edwardsville, wretzla@siue.edu 

Kevin Johnson 
Southern Illinois University Edwardsville 

Follow this and additional works at: https://spark.siue.edu/siue_fac 

 Part of the Biogeochemistry Commons, Environmental Indicators and Impact Assessment Commons, 

and the Water Resource Management Commons 

Recommended Citation Recommended Citation 
Karthic, I., Brugam, RB., Retzlaff, WA., Johnson, K. 2013,The impact of nitrogen contamination and river 
modification on a Mississippi River floodplain lake, Science of the Total Environment 463–464: 734–742 
http://dx.doi.org/10.1016/j.scitotenv.2013.06.070 

This Article is brought to you for free and open access by SPARK. It has been accepted for inclusion in SIUE Faculty 
Research, Scholarship, and Creative Activity by an authorized administrator of SPARK. For more information, please 
contact jkohlbu@siue.edu. 

https://spark.siue.edu/
https://spark.siue.edu/siue_fac
https://spark.siue.edu/siue_fac?utm_source=spark.siue.edu%2Fsiue_fac%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/154?utm_source=spark.siue.edu%2Fsiue_fac%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1015?utm_source=spark.siue.edu%2Fsiue_fac%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1057?utm_source=spark.siue.edu%2Fsiue_fac%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jkohlbu@siue.edu


 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The impact of nitrogen contamination and river 
modification on a Mississippi River floodplain lake 

 
Indu Karthic1 

 
Richard B. Brugam1,2 

 
William Retzlaff1 

 
and 

 
Kevin Johnson1 

 

 

 

 

 
1 Southern Illinois University Edwardsville, Edwardsville, IL 62026 

2Corresponding Author 

(rbrugam@siue.edu) 
 

 
 
 
 



 2 

Abstract 
 
Anthropogenic nitrogen contamination has increased in ecosystems around the world 

(frequently termed the “nitrogen cascade”).  Coke production for steel manufacturing is 

often overlooked as a source of nitrogen to natural ecosystems.  We examined sediment 

cores from a Horseshoe Lake, a floodplain lake located just East of St. Louis Missouri 

(USA) to test whether a coking plant effluent could be traced using stable isotopes of 

nitrogen and diatom microfossils.  The distribution of δ15N values in surface sediment 

samples from the lake shows the highest values near the coking plant effluent.   Analysis 

stable isotopes of nitrogen from sediment cores using a binary mixing model showed 

three sources of nitrogen since 1688 CE. The first source (active between 1688 and 1920 

CE) had a calculated δ15N value of -.8±.4‰. After 1920 a second source with a δ15N of 

20.2±2.0 ‰ became active. The diatom microfossil assemblages present from 1688 CE to 

the late 1800’s are dominated by the planktonic species Aulacoseira granulata and 

periphytic and benthic genera Gomphonema, Cocconeis, and Lyrella. After the late 

1800’s the diatom assemblages are dominated by Staurosira species indicating a shift of 

species from high flow riverine environments to epipelic species from a lake 

environment.   Diatom microfossils did not respond to the changes in nitrogen sources, 

but seem to track the reduction in flooding due to leveeing of the floodplain and the 

isolation of the lake from the river.  Our results show how stable isotopes of nitrogen can 

be used to track nitrogen inputs from industrial sources. They suggest that the high 

nitrogen input has not been a major source of eutrophication in the lake. The diatom 

results indicate that the increased nitrogen input was not a cause of eutrophication. 
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Rather, diatom changes corresponded with changes in connectivity between the 

Mississippi River and its floodplain.  

 
 
1. Introduction 
 
The floodplains of large rivers in the temperate zone have been heavily modified by 

human activities (Junk et al. 1989; Sparks 1995; Sparks et al. 1998).  In particular, dams 

modify natural flood regimes changing times of high water disrupting reproduction of 

river organisms.  In addition levees (dikes) are constructed to prevent the natural 

inundation of large river floodplains protecting industrial and agricultural activities. 

Levees disrupt connectivity of the river with its floodplain endangering river biodiversity 

(Sparks 1995). These modifications allow the industrialization and urban development of 

floodplain land.  In most industrialized countries floodplains have been developed for 

heavy industry because of proximity to inexpensive river transportation (Colten 1990).    

 The American Bottom is a floodplain on the eastern shore of the Mississippi 

River that has been isolated from the River by levees and has undergone intense 

industrialization including construction of oil refineries, stock yards, a steel plant and 

several lead smelters (Brugam et al. 2003; Brugam et al. 2012; Colten 1990).   

 
1.1 Using Stable Isotopes to Trace Nitrogen Inputs from a Steel Plant 
 

Anthropogenic increases in nitrogen levels have been recognized in many ecosystems 

worldwide.  Galloway et al.  (2003) called this process of contamination with fixed 

nitrogen the “nitrogen cascade”. Long-distance transport of fixed nitrogen may cause 
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changes even at remote sites (Wolfe et al. 2001).   A major question is the impact of this 

increased nitrogen deposition on natural ecosystems.   

The sedimentary record in lakes can provide a long-term view of the nitrogen 

cascade because paleolimnologists have discovered that the isotopic composition of 

nitrogen in lake sediment can be used to reconstruct sources of anthropogenic nitrogen to 

lake biota.  Many investigations have shown that wastewater contamination of natural 

waters results in elevated δ15N values of plankton and sediment (Fenech et al. 2012; 

Schindler et al. 2008). Erlenkeuser et al. (1974) linked increased δ15N in sediment cores 

from the Baltic Sea with anthropogenic nitrogen sources.  Similarly, Köster et al. (2005) 

found a rise in δ15N values in a sediment core from Walden Pond, Massachusetts. This 

change occurred at the same time that the diatoms of the lake shifted to more eutrophic 

forms. The investigators suggest that there has been wastewater seepage into the lake.  

Leavitt et al. (2006) traced the effluent of the Regina, Saskatchewan, wastewater 

treatment plant through the lakes of the Qu’Appelle River using stable isotopes of 

nitrogen.  

 In contrast with wastewater contaminated lakes δ15N values declined in the 

sediment of high altitude lakes in the Rocky Mountains near Denver (Baron et al. 2000, 

Wolfe et al. 2001).  Vreca and Muri (2006) found similar declines in δ15N in Slovenian 

mountain lakes. A potential source of low δ15N nitrogen to these lakes is long-distance 

transport of nitrogen oxides from urban air pollution. Holtgrieve et al. (2011) showed that 

these declines in δ15N are widespread in Northern Hemisphere wilderness lakes 

supporting Galloway et al.’s  “nitrogen cascade” hypothesis that even distant human 

activities are increasing nitrogen inputs to ecosystems (Galloway et al. 2003).  
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 The steel industry is another potential, but frequently overlooked, source of 

anthropogenic nitrogen to natural ecosystems. Coke ovens produce an important fuel for 

steel making and smelting of non-ferrous metals (Cairns 1965). The ovens produce large 

amounts of ammonia gas as a byproduct. This gas is derived from nitrogen compounds in 

the coal used to produce coke.  Usually, to prevent air pollution, this effluent gas is 

dissolved in a water wash as ammonium ion, and released into local water bodies.  Before 

release, the effluent may be biologically treated to allow nitrification to convert the 

ammonium to nitrate (Cairns 1965; Melcer et al. 1984; Zhang et al. 2009).  This nitrate 

will provide a large nitrogen source for receiving lakes and streams that may carry an 

isotopic signature that reflects any fractionation occurring in the coke production process.  

Our hypothesis is that nitrogen from steel making represents an important additional 

nitrogen source to natural ecosystems that will be traceable in the sedimentary record 

using stable isotopes and that this nitrogen source can potentially cause eutrophication in 

a receiving lake. A two-source mixing model proposed by Fry (2006) can be used to 

determine the isotopic composition of anthropogenic nitrogen sources.   Diatom 

microfossils from the lake sediment can be used to trace eutrophication (Wolfe et al. 

2001). We used Horseshoe Lake, a Mississippi River floodplain lake located east of  St. 

Louis Missouri, USA to examine the impact of excess nitrogen additions to a floodplain 

lake. 

1.2 Horseshoe Lake and Human Modifications to the Mississippi River 
Floodplain 
 

Horseshoe Lake is a 860 ha (2150 acres, Hill et al. 1981), 2 m deep oxbow lake. The lake 

is located adjacent to Granite City which was incorporated in 1896 shortly after 

Niedringhaus Steel Company (now the Granite City Works of US Steel Company) was 
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built on the lakeshore. The lake is owned and managed by the Illinois Department of 

Natural Resources for fishing and water fowl hunting. For purposes of this study, we 

have divided the lake into 5 basins – the Southwest Basin, the Main Basin, the Middle 

Basing, the Southeast Basin and Canteen Lake (Fig. 1). The Southeast Basin is drained 

during July and August to produce a wetland to support water fowl.  The lake has three 

major inflows.  Nameoki Ditch (Fig. 1) is a storm-water inflow that drains urban areas in 

Granite City. Elm Slough is a wetland that drains agricultural land.  The Granite City 

Works has an effluent that includes nitrate from the coking process (Cairns 1966).    The 

company now produces 650,000 tons of coke a year from 120 ovens.   Cairns (1966) 

summarizes water pollution control at the company in the mid 1960’s.  In 1966 the 

facility was using 246,000 cu m of water per day pumped from the Mississippi River.  

This water was recycled several times and discharged into Horseshoe Lake after 

treatment (Cairns 1966). The wastewater treatment plant for the steel company is separate 

from the Granite City municipal sewer system so it treats very little domestic sewage. 

Wastewater for Granite City is treated and released into the Mississippi River (Cairns 

1966).  

 Horseshoe Lake is located in the American Bottom, the largest floodplain on the 

Mississippi River north of New Orleans.  Because of frequent flooding, the floodplain 

has been subject to extensive anthropogenic modification since the arrival of Euro-

Americans.  Before colonization, the floodplain was a complex network of waterways 

that frequently flooded.  In modern times only a remnant of the pre-settlement wetland 

exists and the floodplain has been protected by an extensive series of levees (Skele 1988).   

Flood control was accomplished slowly starting as early as 1819 when the Illinois state 
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legislature approved funding to drain lakes in the American Bottom.  The American 

Bottom was completely inundated both in 1844 and 1903.      In 1908 the East Side Levee 

and Sanitary District was set up to provide funding to improve levees (Colten 1990).  

 The historical record of leveeing in the American Bottoms is representative of 

many of the large rivers of the world.  The result has been a disruption of river and 

floodplain ecosystems and threats to the diversity of river organisms (Junk et al. 1989). 

The sedimentary record of lakes may record the changes of floodplain and river 

ecosystems in response to development of the river for transportation and flood 

protection.  

2. Methods 
 
2.2 Lake Sediment Sampling and Preparation 
 

Eighty-two surface sediment samples were taken from Horseshoe Lake using an Ekman 

dredge. Sampling sites were arranged at approximately 160 m intervals along a transect 

beginning in the Southwest basin of the lake. These samples were used to construct the 

contour map in Figure 1. Distances and locations of sampling points were measured using 

a Garmin GPS V geographic positioning system.    Each dredge haul was subsampled 

using a small scoop to remove a layer of the surface sediment.  This sample was placed in 

a Whirl-Pak bag until further processed.  

Sediment cores were taken manually in the summer of 2005 in the Southwest 

Basin, the Main Basin and the Canteen Lake Basin of Horseshoe Lake using a Plexiglas 

tube attached to steel rods (Fig. 1).  Seventeen cores (numbered H1 to H17) were taken 

from the lake.   Two cores were selected from the Main Basin (H3, H5) and one (H8) 
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from the Southwest Basin (Fig. 1) for nitrogen isotope analysis. All core sites were 

located in water between 1 and 2 m deep.   

Cores were returned to the laboratory in vertical condition and were extruded 

vertically.  Each core was sliced at 1 cm intervals and the slices were stored in Whirl-Pak 

bags until subsampled. 

2.2 Stable Isotope Methods 

Sediment samples for stable isotope analysis were dried at 60° C and ground in a Spex 

cryogenic grinder. The method of Kendall (1998) for plankton was used to remove 

inorganic carbon.  Each sample was moistened with distilled water and placed in 

dessicator for 24 hours.  The desiccator contained no drying agent, but did contain a 250 

ml beaker filled with concentrated HCl. The HCl gas produced by the acid removed any 

CaCO3 from the sediment. After exposure to the HCl gas produced by the acid, the 

samples were re-dried.  Samples were sent to the Cornell University Isotope Lab for 

analysis.  

2.3 Diatom Preparation 

     Diatom microfossils were prepared from core H8 using a method similar to Moos et 

al. (2005). Approximately 0.5 gm of sediment was placed in a plastic digestion vessel 

(Environmental Express No.SC415). The organic matter in the sample was removed from 

the sediment using a solution of 50% HNO3 and 50% H2SO4. The solution was heated to 

90°C for 4 hours using an Environment Express hot block.  The samples were removed 

from the hotblock and allowed to cool and settle for 24 hours.  The acid was aspirated off 

and replaced with de-ionized water.  This process was repeated every 24 hours until the 

remaining acid was removed.  Subsamples of the diatom suspension were dried on 
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coverslips and mounted in Naphrax mounting medium, diatoms were identified using a 

100x oil immersion lens. Because of the low concentration of diatoms in the lake 

sediment a minimum of 150 individuals were counted at each core depth.  

2.4 Dating 

Dating of the cores from Horseshoe Lake was accomplished using a combination of 

210Pb, radiocarbon and known changes in fossil pollen.   Cores H3 and H8 were dated at 

the St. Croix Watershed Research Center, Marine on St. Croix, using alpha counting of 

210Po, a daughter of 210Pb plated on Ag discs. Core H5 was dated at Southern Illinois 

University Edwardsville using 210Bi ingrowth. (Kharkar et al. 1976).  

 In all cores supported 210Pb was determined by averaging deep core samples. This 

value was subtracted from the total 210Pb activity in the sediment to determine 

atmospherically-derived 210Pb (termed ‘‘unsupported 210Pb’’). Dates were calculated 

using the CRS method (Vermillion et al. 2005; Appleby and Oldfield 1978).  

The increase in pollen from a North American agricultural weed,  Ambrosia, was 

used as an indicator of the arrival of Euro-American farmers in the land area surrounding 

the lake in 1808 (Fig. 2). This date was determined from historic records (W.R. Brink Co.  

1882). Pollen diagrams for cores H3 and H5 are presented in Brugam et al. (2003).  

 Two conventional radiocarbon dates were taken from core H5.  One date was 

taken between 50 and 56 cm – the same depth as the increase in Ambrosia pollen. This 

date was used to make a reservoir correction. The actual date of the Ambrosia increase 

(1808 CE, 142 BP) was subtracted from the radiocarbon date (660 ± 80 14C years BP) 

resulting in a value to correct for reservoir effects.    The second date was taken between 

63 and 73 cm. The resulting date was 710 ± 80 14C years BP. Correcting for reservoir 
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effects, the date is 1758 CE.  Cores H5 and H8 had no radiocarbon dates so ages older 

than 120 years (the limit for 210Pb dating) have been extrapolated from the deepest valid 

210Pb dates.   

2.5 Modern Phytoplankton and Zooplankton Sampling  

Phytoplankton and zooplankton samples were taken in the Southwest and the 

Main Basins at varying time intervals from November 2010 to October 2011 to compare 

with sediment isotopic values.  Phytoplankton was sampled using a glass bottle. 

Zooplankton was sampled using an 80-μ mesh nitex zooplankton net.  Within 2 hours 

both zooplankton and phytoplankton samples were filtered using a GFC glass fiber filter.   

Phytoplankton and zooplankton filters were dried at 60°C for 24 hours. Dried 

samples were pulverized with a SPEX cryogenic grinder. Inorganic carbon was removed 

from the samples using the same methods listed above for sediment samples. Samples 

with inorganic carbon removed were sent to the Cornell Isotope Laboratory at Cornell 

University, Ithaca, N.Y. for analysis.   

3. Theory and Calculations  

Fry (2006) proposed that a simple mixing model can be used to estimate the isotopic 

ratios of nitrogen sources to sediment cores. Fry’s (2006) analysis was an extension of 

the general two source mixing model for isotopes presented by Faure and Mensing 

(2005) modified for stable isotopes of nitrogen and carbon.  A similar approach has been 

used by Brugam et al. (2012) using Pb isotopes at Horseshoe Lake. 

 When two sources of differing isotopic composition are mixed, the resulting 

mixture represents an average of the two sources weighted for the amount of nitrogen 
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contributed by each source.  The basic equation for this mixing model is (notation 

follows Fry 2006): 

δsample*(m1+m2) = δsource1*m1 + δsource2*m2     (1) 

Where:           δsample = the isotopic ratio of the final mixture (sample) 

 δsource1= the isotopic ratio of source 1 

  δsource2= the isotopic ratio of source 2 

  m1   = the %N from source 1 mixed into the sample 

  m2 = the %N from source 2 mixed into the sample 

Equation 1 can be rearranged to show the isotopic composition of the sample: 

 δsample =  (δsource1*m1 + δsource2*m2)/(m1+m2)  

As is, this equation has too many variables to conveniently solve.  However, because of 

conservation of mass, the total mass of nitrogen in the sample must equal the sum of the 

masses of contributed by the two sources (Equation 3).  

     mt = m1 + m2            Where mt = the total mass of the sample      (3)    

Equation 2 can be substituted into equation 3 to reduce the number of unknowns.  

   δsample =  [δsource1*m1 + δsource2*(mt - m1)]/mt   (4)   

 Fry (2006) suggests that the mixing model might be taken further to determine the 

background (source 1) and pollution (source 2) nitrogen sources mathematically.  

Equation 4 describes a rectangular hyperbola. The asymptotes of the hyperbola are δsource1 

and δsource2.  These asymptotes can be found by graphing δsample against 1/ %N forming a 

“reciprocal plot”. In our case, when the sediment δ15N is plotted against the reciprocal of 

the sediment %N, the y-intercept of the line will be the isotopic ratio of the pollution 

source. Turner et al. (2006) used this method to calculate carbon sources to the sediment 
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of the Charlotte Harbor estuary in Florida.  We can also use it to determine nitrogen 

sources to sediment organic matter in Horseshoe Lake.   

 Application of reciprocal plots to determine N sources to a lake sediment can be 

complicated if there are three or more N sources (Faure and Mensing 2005).  However, in 

a sediment core, multiple sources may be dominant at different times during the history 

of the lake.  The result will be that the two-component mixing model proposed here will 

apply only to certain segments of core.  The result of a reciprocal plot will be a series of 

independent line segments with different y-intercepts representing different sources.  

Three sources will result in a “ternary” mixing diagram where the mixing curves form a 

triangle with each vertex indicating the isotopic composition of an isotope source (Faure 

and Mensing 2005).   

4. Results 

4.1 Surface sediments and plankton 

 Surface sediment samples can indicate the spatial distribution of effluents with 

anomalous δ15N values within a lake.  The δ15N values of surface sediment from 

Horseshoe Lake show distinct differences among basins (Fig 1).  There is a gradient of 

δ15N values from the Southwest Basin to the Southeast Basin. The Southwest Basin has 

the highest values, averaging 12.2 ± 2 ‰ (Fig 2). The Main and Middle Basins have 

intermediate values (9.4±0.5‰ and 9.1±0.8‰ respectively) The Southeast Basin had the 

lowest values averaging 6.6 ± 0.5 ‰.  A Kruskal-Wallis non-parametric one-way 

analysis of variance test among the basins was highly significant (p<.001).  

 Modern phytoplankton and zooplankton samples taken from the Southwest Basin 

and the Main Basin have higher δ15N values than their respective surface sediments (Fig. 
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2).  However, the δ15N values for the plankton from the Southwest Basin and the Main 

Basin were not significantly different by a t test.  

4.2 Stable Isotopes in Sediment cores 

  Sediment age vs. depth curves were established for the Horseshoe Lake cores 

using 210Pb analysis, radiocarbon dating and pollen analysis. Extrapolation of 210Pb dates 

indicates that core H8 reached the oldest sediment (1688 CE). 

 The percent N and δ15N profiles for all three cores were similar (Fig 4). Sediment 

percent N was highest before 1900 (0.6 to 0 .9%), declining to a lower value (0.3%) 

around 1900.  Because core H8 penetrates more deeply into the sediment and earlier in 

time it shows that the high pre-1900 values are really a peak percentage (0.9%) that is 

reached in 1833.  Core H8 has low N percentages before the 1760’s (0.30%) 

 Values of δ15N rise after 1900 (Fig. 4).  In all cores the maximum values are 

reached in the 1920’s and continue to the sediment surface.  Consistent with the 

differences δ15N values in surface samples, the maximum δ15N values vary with core 

location.  The core from the Southwest Basin (core H8) reaches the highest δ15N value 

(15.19‰).  Cores H5 and H3 from the Main Basin reach lower maximum values (9.76 ‰ 

and 12.01‰) than core H8 (Fig 4). 

 Percent organic carbon values in core 8 reaches a maximum of 10.9% in the mid-

1800’s (Fig. 4).  Cores H3 and H5 show little change in percent organic carbon over time.  

In all three cores δ13C declines from -24‰ to -26‰ after 1900.  Carbon to nitrogen ratios 

do not vary much from 10 (C:N) throughout all depths in all cores (Fig. 4).  

 Using the mixing model approach of Fry (2006) we estimated the isotopic 

composition of the multiple sources of nitrogen to Horseshoe Lake (Fig. 5).  When    δ15N 
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values for each sediment sample are plotted against the reciprocal of %N the y-intercept 

of the regression line is the isotopic composition of one of the 15N sources.  Two groups 

of data lying along two different regression lines are revealed when the 15N values of 

Horseshoe Lake core samples are plotted against 1/%N (Fig. 5).   Samples from core 

levels deposited after approximately 1920 lie along a line of negative slope with a y-

intercept of 20.2 ±2.0 ‰ δ15N.  Samples from before 1920 have a y-intercept of -.8± 

.4‰.   This value is not significantly different from 0.  The regression lines for both sets 

of data cross at a δ15N value of 5.3 ‰.  These results suggest that there have been at least 

3 different sources of nitrogen active at different times in the history of the lake.  Before 

1920 the sources of N to the lake sediment were a low δ15N source (-.8 ‰) mixed with an 

intermediate δ15N source (5.34 ‰).  After 1920, the low δ15N source was replaced by a 

very high δ15N source (20.8‰). This higher δ15N source mixed with the 5.3‰ source. 

Figure 5 indicates that the low δ15N source disappeared after 1920 because there are no 

data points indicating the presences of such mixtures.  If mixing between the high δ15N 

source and the low δ15N source did exist, they would plot on a mixing line between the 

two regression lines on the diagram.  There is no evidence of a mixing line between the 

low and high δ15N sources.  

4.3 Diatom Microfossils in Core H8 

 Sediment diatom microfossils from core H8 fall into two contrasting assemblages. 

Before about 1900 CE, the assemblages are characterized by many epiphytic genera 

including Gomphonema, Cocconeis and the species Aulacoseira granulata and A. 

ambigua. This community includes Lyrella cf. hennedyi.   After the late 1800’s and 

early 1900’s, diatom assemblages shift to dominance by Staurosira construens var. 
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venter, S. construens and Pseudostaurosira brevistriata.   Craticula cuspidata, Neidium 

iridis and Amphora ovalis are present throughout the core (Fig. 6).    

5. Discussion 

5.1 Sediment Isotopes 

Surface sample analysis shows that the likely source of the high δ15N fixed 

nitrogen is the Southwest Basin of the lake which is also the location of the steel plant 

effluent (Fig. 1). The surface sample analysis is consistent with the hypothesis that the 

steel plant effluent is the source of the high δ15N effluent. In addition the time course of 

the increase in sediment δ15N from the cores matches the chronology of the coking plant 

– the likely source of highly fractionated fixed nitrogen. There is no similar elevated 

isotopic value in sediment near Nameoki Ditch or Elm Slough (Fig. 1).  Many other 

investigators have shown that the spatial distribution of sediment δ15N tracks pollution 

sources (Leavitt et al. 2006).    Similarly, our work at Horseshoe Lake suggests that a 

high δ15N source enters the Southwest Basin of the lake.  However, modern plankton 

samples from the Southwest Basin do not show significantly higher δ15N values than the 

lake’s Main Basin.  

The Southeast Basin has the lowest δ15N of the study (Figs. 1 and 2) suggesting 

that the 2 month period in summer when the basin is drained has a strong impact on 

nitrogen cycling.  It is unclear why there is such a strong and statistically significant 

difference in the δ15N values of the sediment organic matter.  

The δ13C values decline in all sediment cores after 1900 suggesting eutrophication 

of the lake.  Torres et al. (2012) found a similar decline over time in Lake Okeechobee, a 

large eutrophic Florida Lake.  They suggest that the decline occurs because of increasing 
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carbon limitation of photosynthesis as a lake becomes more eutrophic.  Our data 

corroborate this hypothesis.  

C/N ratios in all cores are nearly constant through time with values near 10. The 

relatively low values at Horseshoe Lake suggest that most of the organic matter in the 

sediment comes from phytoplankton. Sediment organic matter derived from 

phytoplankton has relatively low C/N ratios (<10) whereas sediment carbon derived from 

terrestrial plants has higher C/N ratios (>20) (Kraushal and Binford 1999).  

5.2 Mixing Model Analysis 

Mixing model analysis can also be used to test the hypothesis that the sources of 

fixed nitrogen to the lake changed after the construction of the coking plant. This analysis 

shows that before 1920 the major source of nitrogen to the lake had an isotopic 

composition near 0‰ indicating that biological nitrogen fixation was the major source of 

nitrogen to the lake (Kendall 1989) .  N2 fixation by cyanobacteria does not fractionate 

nitrogen (Kendall 1998).  This source indicates that biological nitrogen fixation by 

cyanobacteria was a major source of nitrogen to the lake until about 1920.     

 After 1920, the nitrogen biogeochemistry of the lake changes significantly. After 

this date biological nitrogen fixation was replaced by a new high δ15N source.   The 

disappearance of the cyanobacterial source is consistent with the addition of a new, large 

nitrogen source to the lake.  Such an increase in nitrogen loading would remove the 

competitive advantage of nitrogen fixing cyanobacteria have when nitrogen is limiting 

(Schindler et al. 2008). Hill et al. (1981) surveyed the phytoplankton of the Horseshoe 

Lake  and found cyanobacteria to dominate.  We propose that before 1920 cyanobacteria 

had a much more important role in the nitrogen cycle of the lake than they do now.   
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 We also propose that the high δ15N source that appeared in the lake is the coke 

plant effluent from the Granite City Works.  The process of flue gas washing should 

fractionate the nitrogen isotopes of nitrogen because ammonia volatilization favors the 

lighter isotope leaving the heavier isotope to be preferentially dissolved in the wash 

water.  Volatilization of ammonia in biological systems increases the δ15N values of the 

residual ammonia because of this fractionation process (Mizutani et al. 1986). The 

addition of this new nitrogen source to the lake when the coke plant was opened in 1921 

changed the biogeochemistry of nitrogen in the lake, reducing biological nitrogen 

fixation.   

 Unfortunately, there are other nitrogen sources to the lake that cannot be ruled 

out.  The USEPA (1975) concluded that 27% of the nitrogen loading to the lake came 

from Nameoki Ditch and 34% came from other sources including the steel plant effluent.  

High δ15N is characteristic of domestic wastewater contamination (Leavitt et al. 2006).  

Although Granite City domestic wastewater is treated and discharged directly into the 

Mississippi River, the Nameoki Ditch could also be supplying nitrogen contaminated run-

off to the lake.   

5.2 Diatoms 

 The diatom assemblages from core H8 are not consistent with a eutrophication model 

resulting from the shift in nitrogen source.  In the Norfolk Broads (a group of shallow 

lakes in the UK) Bennion et al. (2001) found a shift in diatom assemblages from a 

Staurosira-dominated community to a plankton-dominated one.  They interpreted this 

change as an increase in trophic status with an epipelic community representing clear 

water being replaced by a plankton community.  This shift could represent eutrophication 
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as described for shallow lakes by Scheffer and van Nes (2007).   However, Bennion et al. 

(2001) note the difficulties of trophic status reconstruction when Staurosira is common 

because of its broad nutrient tolerances.  

 The diatom assemblages at Horseshoe Lake are problematical because they seem 

to represent a shift from a plankton-dominated community with Aulacoseira granulata to 

a Staurosira-dominated assemblage. Aulacoseira granulata, although a planktonic 

species, was found mostly in shallow, alkaline lakes in a survey of  Minnesota diatom 

microfossils (Brugam 1983,1993).   The shift from a planktonic community to an epipelic 

community is exactly the opposite change that occurred in the Norfolk Broads. It is 

difficult to interpret this change as a eutrophication response at Horseshoe Lake.   

 It may be that the change in diatom assemblages in Horseshoe Lake during the 

late 1800’s does not represent eutrophication at all, but may represent the more profound 

change in American Bottoms ecology that was caused by the increasingly effective flood 

control measures that removed connections between the floodplain and the River.  A 

particularly problematical species found in Horseshoe Lake is Lyrella hennedyi 

(Wm.Smith) Stickle et Mann. Round et al.  (1990) note that the species is a heavily 

silicified diatom that is found in fossil assemblages with evidence of dissolution. This 

description certainly fits the Horseshoe Lake diatom assemblages.  The genus Lyrella has 

also been found in marine beach sands around the world (Mann 1997; Mann and Stickle 

1993). We suggest that the loss of the genus Lyrella from the lake at this time is 

indicative of the change in the floodplain.  This genus is present in sandy habitats (Mann 

1997; Mann and Stickle 1993) which might be expected in a regularly flooded backwater 

environment where high flow regimes were probably common.  Various Lyrella species 
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have been found in rivers and estuaries around the world (Amal 2012; Majewska et al. 

2012, Moura et al. 2007).  We hypothesize that the prevention of flooding has modified 

lake habitats by removing periods of high flow thus expanding fine sediment habitats for 

epipelic species like Staurosira construens var. venter and shrinking coarse, sandy 

habitats favored by Lyrella.  

Eutrophication of the Lake 

Modern Horseshoe Lake is highly eutrophic with a mean total phosphorus concentration 

of  275 µg/L (Hill et al. 1981). The lowest total phosphorus concentrations in the 1975 

US EPA survey were found adjacent to the steel plant effluent.   In 1975 the USEPA 

concluded that the lake was phosphorus-limited (USEPA 1975). The role of the Granite 

City Steel effluent in maintaining the high trophic status of the lake is an important 

practical question.   A domestic wastewater treatment facility effluent has high 

concentrations of both nitrate and phosphate.  However, the steel plant industrial effluent 

contains very little phosphate but large amounts of nitrate (Luthy 1981).  The question is 

to what extent does the coke plant effluent contributes to the eutrophication of the lake?  

The diatom assemblages from Horseshoe Lake do not seem to indicate eutrophication as 

a result of human activities.  They seem to be responding to shifts in habitat suitability 

due to changes in flood regimes.  The mixing model analysis suggests that the 

contribution of biological nitrogen fixation by cyanobacteria was much larger in pre-

settlement times than it is now suggesting that the new nitrogen effluent had little impact 

on lake trophic status and may actually have reduced cyanobacterial blooms.  

       The lack of impact from the nitrate effluent at Horseshoe Lake is consistent with 

limnological theory.  Most limnologists agree that phosphate is the key nutrient inducing 



 20 

eutrophication in lakes. In particular Schindler et al. (2008) present experimental 

evidence that nitrate inputs cannot control eutrophication and that phosphate is the key 

limiting nutrient for primary production in most lakes. In their classic experiment, 

Schindler et al. (1977) added nitrate, bicarbonate and phosphate to one basin of a lake 

that had been partitioned into two sections.  The second section received only nitrate and 

bicarbonate.  Only the basin receiving the phosphate became eutrophic suggesting that 

phosphate alone is the limiting factor for eutrophication.  Schindler et al. (2008) 

continued the experiment for 37 years without any evidence that nitrate supports 

eutrophication. Schindler et al. (2008) clearly state “Eutrophication of lakes cannot be 

controlled by reducing nitrogen input”. Carpenter (2008) argues that control of phosphate 

– not nitrate -- effluents is critical to mitigating eutrophication.  

 The nitrogen effluent from the coking plant certainly did modify nitrogen cycling 

in the lake.  It may have reduced biological nitrogen fixation in the lake. Unlike the 

oligotrophic nitrogen-limited high mountain lakes which show eutrophication from air 

pollution-derived nitrates (Holtgrieve et al. 2011; Vreca and Muri 2006; Wolfe et al. 

2001), Horseshoe Lake probably was and continues to be phosphorus-limited with plenty 

of fixed nitrogen to support primary production.  Thus, a nitrogen effluent is unlikely to 

cause further eutrophication.  

Ultra-oligotrophic, high altitude lakes may be especially susceptible to 

eutrophication by nitrogen addition.  Wolfe et al. (2001) showed changes in diatoms 

consistent with eutrophication in high altitude lakes with enhanced fixed nitrogen inputs 

from atmospheric deposition.  These lakes may be susceptible to eutrophication by 

nitrogen addition because general nutrient loading rates are so low.  These lakes are 
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unlike Horseshoe Lake which is a lowland lake that should have sufficient natural inputs 

of nutrients to be moderately eutrophic.  

 The experiments of Schindler et al. (1977, 2008) support the hypothesis that the 

steel plant effluent at Horseshoe Lake may not be the cause of eutrophication even 

though it is the source for a large fraction of the nitrogen in the sediment of the lake. The 

effluent is also likely to be the major source of nitrogen for much of the lake biota.    

However, the amount of primary production in the lake is not limited by nitrogen inputs, 

but by phosphate inputs. The coking plant effluent is unlikely to contain large amounts of 

phosphate. However, Nameoki Ditch and Elm Slough are potential alternative sources of 

the phosphate that controls the trophic status of the Lake.   

6. Conclusions 

Stable isotopes can be used to track nitrogen from coke plant effluent in a lake.  An 

analysis of sediment cores from a Horseshoe Lake, a lake receiving treated coke plant 

effluent, shows that there was a major change in nitrogen biogeochemistry when the plant 

began operation.  At that time lake sediment organic matter shifted from receiving most 

of its nitrogen from biological nitrogen fixation to receiving a significant fraction of 

nitrogen from a high δ15N source.  This source is likely the coke plant effluent.  The 

spatial distribution of surface sample δ15N values also suggests that nitrogen from the 

coke plant is this source.  Diatom microfossils do not indicate that the increased nitrate 

loading caused further eutrophication in excess of what had already been caused by urban 

development around the lake.  Fossil diatom assemblages appear to be more sensitive to 

changes in the flooding regime caused by flood control structures (levees) that prevent 

rapid flow of Mississippi River water through the lake.  
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Figure Captions 
 

1. Map of Horseshoe Lake showing surface samples and cores.  Legend shows key 

to map colors 

2. Isotopic values for sediment, phytoplankton and zooplankton taken in different 

basins of Horseshoe Lake.   The dock samples were taken at the boat dock in the 

Main Basin of the lake.  Numbers at the tops of columns indicate number of 

samples.  

3. Age depth curves for cores H3, H5 and H8.  Pollen dates from Vermillion et al. 

(2005).   

4. Percent nitrogen, 15N, percent carbon, δ13C, and molar C/N ratios in cores from 

Horseshoe Lake, Madison County, IL. Horizontal lines indicate historical events.  

The upper line shows the establishment of the coke plant in 1923. Bottom line 

indicates the establishment of  Granite City (1895).   

5. Reciprocal diagram for isotopic composition of samples from the Horseshoe Lake 

cores.  The closed circles indicate samples that were deposited after 1920. Open 

circles indicate sediment deposited before 1920.  Lines are regressions of 15N 

versus the reciprocal of the percent nitrogen in the core sample.  

6. Diatom diagram from Horseshoe Lake core H8. Only the most abundant species 

are indicated.  Exaggeration lines indicate 5X.  Historic events (zone boundaries) 

indicate the start of coke plant operation (1923, 77 years before 2000) and the 

establishment of Granite City (1895, 105 years before 2000). 
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Figure 3 
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Figure 5 
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